DOI QR코드

DOI QR Code

Suppression subtractive hybridization (SSH) for isolation and characterization of genes related to testicular development in the giant tiger shrimp Penaeus monodon

  • Leelatanawit, Rungnapa (Program in Biotechnology Chulalongkorn University) ;
  • Klinbunga, Sirawut (Center of Excellence for Marine Biotechnology Chulalongkorn University) ;
  • Aoki, Takashi (Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology) ;
  • Hirono, Ikuo (Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology) ;
  • Valyasevi, Rudd (National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency) ;
  • Menasveta, Piamsak (Center of Excellence for Marine Biotechnology Chulalongkorn University)
  • Published : 2008.11.30

Abstract

Suppression subtractive hybridization (SSH) cDNA libraries of the giant tiger shrimp, Penaeus monodon, were constructed. In total, 178 and 187 clones from the forward and reverse SSH libraries, respectively, of P. monodon were unidirectionally sequenced. From these, 37.1% and 53.5% Expressed Sequence Tags (ESTs) significantly matched known genes (E-value < 1e-04). Three isoforms of P. monodon progestin membrane receptor component 1: PM-PGMRC1-s (1980 bp), PM-PGMRC1- m (2848 bp), and PM-PGMRC1-l (2971 bp), with an identical ORF of 573 bp corresponding to a deduced polypeptide of 190 amino acids, were successfully identified by RACE-PCR. Interestingly, PMPGMRC1 showed a greater expression level in testes of juvenile than broodstock P. monodon (P < 0.05). Dopamine administration ($10^{-6}$ mol/shrimp) resulted in up-regulation of PM-PGMRC1 in testes of juveniles at 3 hrs post treatment (P < 0.05), but had no effect on PM-Dmc1 (P > 0.05).

Keywords

References

  1. Bailey-Brock, J. H. and Moss, S. M. (1992) Penaeid taxonomy, biology and zoogeography; in Marine Shrimp Culture: Principles and Practices, Fast, A. W. and Lester, L. J. (eds.), pp. 9-23, Elsevier Science Publishers, Amsterdam, The Netherlands
  2. Asian Shrimp Culture Council (1996) Asian Shrimp News 1st quarter
  3. Limsuwan, C. (2004) Diseases of Pacific white shrimp (Litopenaeus vannamei) cultured in Thailand. Proceeding of the JSPS-NRCT International Symposium Joint Seminar 2004: Management of Food Safety in Aquaculture and HACCP. pp. 36-41, Kasetsart University, Thailand
  4. Preechaphol, R., Leelatanawit, R., Sittikankeaw, K., Klinbunga, S., Khamnamtong, B., Puanglarp, N. and Menasveta, P. (2007) Expressed sequence tag analysis for isolation of sex-related transcripts in the giant tiger shrimp (Penaeus monodon). J. Biochem. Mol. Biol. 40, 501-510 https://doi.org/10.5483/BMBRep.2007.40.4.501
  5. Withyachumnarnkul, B., Boonsaeng, V., Flegel, T. W., Panyim, S. and Wongteerasupaya, C. (1998) Domestication and selective breeding of Penaeus monodon in Thailand; in Proceedings to the Special Session on Advances in Shrimp Biotechnology, Felgel, T. (ed.), pp. 73-77, The Fifth Asian Fisheries Forum: International Conference on Fisheries and Food Security Beyond the Year 2000. 11-14 November 1998. Chiengmai, Thailand
  6. Benzie, J. A. H. (1998) Penaeid genetics and biotechnology. Aquaculture 164, 23-47 https://doi.org/10.1016/S0044-8486(98)00175-6
  7. Diatchenko, L., Lau, Y. C., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E. D. and Siebert, P. D. (1996) Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025-6030
  8. Gestal, C., Costa, M., Figueras, A. and Novoa, B. (2007) Analysis of differentially expressed genes in response to bacterial stimulation in hemocytes of the carpet-shell clam Ruditapes decussatus: Identification of new antimicrobial peptides. Gene 406, 134-143 https://doi.org/10.1016/j.gene.2007.07.030
  9. Amparyup, P., Klinbunga, S., Tassanakajon, A., Hirono, I., Aoki, T. and Jarayabhand, P. (2004) Expressed sequence tag (EST) analysis of ovaries and testes from the tropical abalone (Haliotis asinina). Mar. Biotechnol. 6, S365-S370
  10. Miura, T., Higuchi, M., Ozaki, Y., Ohta, T. and Miura, C. (2006) Progestin is an essential factor for the initiation of the meiosis in spermatogenetic cells of the eel. Proc. Natl. Acad. Sci. USA 103, 7333-7338
  11. Mourot, B., Nguyen, T., Fostier, A. and Bobe, J. (2006) Two unrelated putative membrane-bound progestin receptors, progesterone membrane receptor component 1 (PGMRC1) and membrane progestin receptor (mPR) beta, are expressed in the rainbow trout oocyte and exhibit similar ovarian expression patterns. Reprod. Biol. Endocrinol. 4, 6 (doi:10.1186/1477-7827-4-6)
  12. Ozols, J. (1989) Structure of cytochrome b 5 and its topology in the microsomal membrane. Biochim. Biophys. Acta 997, 121-130 https://doi.org/10.1016/0167-4838(89)90143-X
  13. Meyer C., Schmid R., Scriba P. C. and Wehling M (1996) Purification and partial sequencing of high-affinity progesterone- binding site(s) from porcine liver membranes. Eur. J. Biochem. 239, 726-731 https://doi.org/10.1111/j.1432-1033.1996.0726u.x
  14. Phelan, P., Bacon, J. P., Davies, J. A., Stebbings, L. A., Todman, M. G., Avery, L., Baines, R. A., Barnes, T. M., Ford, C., Hekimi, S., Lee, R., Shaw, J. E., Starich, T. A., Curtin, K. D., Sun, Y.-A. and Wyman, R.J. (1998) Innexins: a family of invertebrate gap-junction proteins. Trends Genet. 14, 348-349 https://doi.org/10.1016/S0168-9525(98)01547-9
  15. Hong, S-M, Kang, S-W, Goo, T-W., Kim, N-S., Lee, J-H., Kim, K-A. and Nho, S-K. (2008) Two gap junction channel (innexin) genes of the Bombyx mori and their expression. J. Insect Physiol. 54, 180-191 https://doi.org/10.1016/j.jinsphys.2007.09.002
  16. Abe, S-I., (1987) Differentiation of spermatogenic cells from vertebrates in vitro. Int. Rev. Cytol. 109, 159-209 https://doi.org/10.1016/S0074-7696(08)61722-2
  17. Ozaki, Y. Miura, C. and Miura, T. (2006) Molecular cloning and gene expression of Spo11 during spermatogenesis in the Japanese eel, Anguilla japonica. Comp. Biochem. Physiol. A 143, 309-314 https://doi.org/10.1016/j.cbpb.2005.12.008
  18. Shoji M., Chuma, S., Yoshida, K., Morita, T. and Nakatsuji, N. (2005) RNA interference during spermatogenesis in mice. Dev. Biol. 282, 524-534 https://doi.org/10.1016/j.ydbio.2005.03.030
  19. Kajiura-Kobayashi, H., Kobayashi, T. and Nagahama, Y. (2005) Cloning of cDNAs and the differential expression of A-type cyclins and Dmc1 during spermatogenesis in the Japanese eel, a teleost fish. Dev. Dynamics 232, 1115-1123 https://doi.org/10.1002/dvdy.20289
  20. Sarojini, R., Nagabhushanam, R. and Fingerman, M. (1995). In vivo effects of dopamine and dopaminergic antagonists on testicular maturation in the red swamp crayfish, Procambarus clarkii. Biol. Bull. 189, 340-346 https://doi.org/10.2307/1542151
  21. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  22. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, New York, USA
  23. Khamnamtong, B., Thumrungtanakit, S., Klinbunga, S., Aoki, T., Hirono, I., and Menasveta P. (2006) Identifica- tion of sex-specific expression markers in the giant tiger shrimp (Penaeus monodon). J. Biochem. Mol. Biol. 39, 37-45 https://doi.org/10.5483/BMBRep.2006.39.1.037
  24. Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight metrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  25. Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  26. Felsenstein, J. (1993) Phylip (Phylogenetic Inference Package) Version 3.5c. Department of Genetics, University of Washington, Seattle, USA

Cited by

  1. Identification of Male Gametogenesis Expressed Genes from the Scallop Nodipecten subnodosus by Suppressive Subtraction Hybridization and Pyrosequencing vol.8, pp.9, 2013, https://doi.org/10.1371/journal.pone.0073176
  2. Molecular cloning and characterization of Dmc1, a gene involved in gametogenesis, from the whiteleg shrimp Litopenaeus vannamei vol.76, pp.6, 2010, https://doi.org/10.1007/s12562-010-0295-6
  3. Gonadal transcriptomic analysis and differentially expressed genes in the testis and ovary of the Pacific white shrimp (Litopenaeus vannamei) vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-2219-4
  4. Identification of differentially expressed genes in American cockroach ovaries and testes by suppression subtractive hybridization and the prediction of its miRNAs vol.288, pp.11, 2013, https://doi.org/10.1007/s00438-013-0777-1
  5. Expression of Sex and Reproduction-Related Genes in Marsupenaeus japonicus vol.12, pp.6, 2010, https://doi.org/10.1007/s10126-009-9254-6
  6. Isolation and characterization of genes functionally involved in ovarian development of the giant tiger shrimp Penaeus monodon by suppression subtractive hybridization (SSH) vol.33, pp.4, 2010, https://doi.org/10.1590/S1415-47572010000400014
  7. Identification of reproduction-related proteins and characterization of proteasome alpha 3 and proteasome beta 6 cDNAs in testes of the giant tiger shrimp Penaeus monodon vol.355, pp.1, 2012, https://doi.org/10.1016/j.mce.2012.02.005
  8. Isolation of cDNA, genomic organization and expression of small androgen receptor-interacting protein 1 (PmSARIP1) in the giant tiger shrimp Penaeus monodon vol.412-413, 2013, https://doi.org/10.1016/j.aquaculture.2013.07.011
  9. Isolation and characterization of progesterone receptor-related protein p23 (Pm-p23) differentially expressed during ovarian development of the giant tiger shrimp Penaeus monodon vol.308, 2010, https://doi.org/10.1016/j.aquaculture.2010.06.037
  10. Identification and expression analysis of differentially expressed genes from shrimp (Penaeus monodon) in response to low salinity stress vol.35, pp.6, 2013, https://doi.org/10.1016/j.fsi.2013.09.038
  11. Molecular characterization and expression profiles of cyclin A and cyclin B during ovarian development of the giant tiger shrimp Penaeus monodon vol.152, pp.4, 2009, https://doi.org/10.1016/j.cbpa.2008.12.011
  12. Molecular cloning and expression of progestin membrane receptor component 1 (Pgmrc1) of the giant tiger shrimp Penaeus monodon vol.168, pp.3, 2010, https://doi.org/10.1016/j.ygcen.2010.06.002
  13. Validation of Reference Genes for Real-Time PCR of Reproductive System in the Black Tiger Shrimp vol.7, pp.12, 2012, https://doi.org/10.1371/journal.pone.0052677
  14. Identification of genes preferentially expressed in testis and spermatogonial cells of Labeo rohita by subtractive and suppressive hybridization vol.42, pp.8, 2011, https://doi.org/10.1111/j.1365-2109.2010.02710.x
  15. Transcriptomic information from Pacific white shrimp ( Litopenaeus vannamei ) ovary and eyestalk, and expression patterns for genes putatively involved in the reproductive process vol.246, 2017, https://doi.org/10.1016/j.ygcen.2016.12.005
  16. The State of “Omics” Research for Farmed Penaeids: Advances in Research and Impediments to Industry Utilization vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00282
  17. Predicted sub-populations in a marine shrimp proteome as revealed by combined EST and cDNA data from multiple Penaeus species vol.3, pp.1, 2010, https://doi.org/10.1186/1756-0500-3-295