DOI QR코드

DOI QR Code

Attenuating Development of Cardiovascular Hypertrophy with Hydrolysate of Chicken Leg Bone Protein in Spontaneously Hypertensive Rats

  • Cheng, Fu-Yuan (Department of Animal Science, National Chung-Hsing University) ;
  • Wan, Tien-Chun (Department of Animal Science, National Chung-Hsing University) ;
  • Liu, Yu-Tse (Department of Animal Science, National Chung-Hsing University) ;
  • Lai, Kung-Ming (Department of Health Diet and Restaurant Management, Chung Shan Medical University) ;
  • Lin, Liang-Chuan (Department of Animal Science, National Chung-Hsing University) ;
  • Sakata, Ryoichi (School of Veterinary Medicine, Azabu University)
  • 투고 : 2007.10.15
  • 심사 : 2007.12.23
  • 발행 : 2008.05.01

초록

This study developed a natural ingredient as a functional food possessing properties of attenuation of hypertension and cardiovascular hypertrophy. In a previous study hydrolysates obtained from chicken leg bone protein using Alcalase strongly inhibited angiotensin I converting enzyme (ACE) in vitro. In particular, hydrolysate (A4H) from four hours of incubation exhibited the highest ACE inhibitory activity (IC50 = 0.545 mg/ml). A4H was selected as a potent ACE inhibitor and orally administrated to spontaneously hypertensive rats (SHR) for eight weeks to investigate attenuating effects on age-related development of hypertension and cardiovascular hypertrophy. Results showed that treatment with A4H of SHRs attenuated the development of hypertension as effectively as the clinical antihypertensive drug captopril. Moreover, a significantly lower heart to body weight ratio and thinness of coronary arterial wall was observed in SHRs that had been treated with A4H or captopril. The results suggest that A4H can be utilized in developing an ACE inhibitor as a potential ingredient of functional foods to alleviate hypertension and cardiovascular hypertrophy.

키워드

참고문헌

  1. Bhoola, K. D., C. D. Figueroa and K. Worthy. 1992. Bioregulation of kinins - kallikreins, kininogens, and kininases. Pharmacol. Rev. 44:1-80.
  2. Brian, J. and R. Rosario. 2005. Hypertension: a review and rationale of treatment. Disease-a-Month 51:548-614. https://doi.org/10.1016/j.disamonth.2005.10.004
  3. Chen, S. C., J. Z. Su, K. Wu, W. Y. Hu, D. G. Gardner and D. G. Chen. 1998. Early captopril treatment prevents hypertrophy dependent gene expression in hearts of SHR. Am. J. Physiol. 274:1511-1517. https://doi.org/10.1152/ajpcell.1998.274.6.C1511
  4. Cheng, F. Y., Y. T. Liu, T. C. Wan, K. M. Lai and L. C. Lin. 2007a. The study on development of bioactive peptides derived from chicken bone protein I: preparation of chicken leg bone hydrolysates and ACE inhibitory activity. Taiwan J. Agric. Chem. Food Sci. 45:21-26.
  5. Cheng, F. Y., Y. T. Liu, T. C. Wan, C. M. Chen and L. C. Lin. 2007b. The study on development of bioactive peptides derived from chicken bone protein II: antioxidative activity. Taiwan J. Agric. Chem. Food Sci. 45:84-90.
  6. Cheng, F. Y., Y. T. Liu, T. C. Wan, L. C. Lin and R. Sakata. 2008. The development of angiotensin I converting enzyme inhibitor derived from chicken bone protein. Anim. Sci. J. 79:121-127.
  7. Cohen, M. L. 1985. Synthetic and fermentation-derived angiotensin converting enzyme inhibitors. Annu. Rev. Pharmacol. Toxicol. 25:307-323. https://doi.org/10.1146/annurev.pa.25.040185.001515
  8. Dhlof, B., K. Pennert and L. Hansson. 1992. Reversal of left ventricular hypertrophy in hypertensive patients. Am. J. Hypertens. 5:95-110. https://doi.org/10.1093/ajh/5.2.95
  9. Diez, J. and C. Laviades. 1997. Monitoring fibrillar collagen turnover in hypertensive heart disease. Cardiovasc. Res. 35: 202-205. https://doi.org/10.1016/S0008-6363(97)00072-2
  10. Freslon, J. L. and J. F. Giudicelli. 1983. Compared myocardial and vascular effects of captopril and dihydralazine during hypertension development in spontaneously hypertensive rats. Br. J. Pharmacol. 80:533-543. https://doi.org/10.1111/j.1476-5381.1983.tb10726.x
  11. Habib, G. 1997. Reappraisal of the importance of heart rate as a risk factor for cardiovascular morbidity and mortality. Clin. Ther. 19:39-52.
  12. Hu, W. Y., Y. J. Han, L. Z. Gu, M. Piano and P. de Lanerolle. 2007. Involvement of ras-regulated myosin light chain phosphorylation in the captopril effects in spontaneously hypertensive rats. Am. J. Hyperten. 20:53-61. https://doi.org/10.1016/j.amjhyper.2006.05.024
  13. Ikeda, Y., T. Nakamura, H. Takano, H. Kimura, J. E. Obata, S. Takeda, A. Hata, K. Shido, S. Mochizuki and Y. Yoshida. 2000. Angiotensin II-induced cardiomyocyte hypertrophy and cardiac fibrosis in stroke-prone spontaneously hypertensive rats. J. Lab. Clin. Med. 135:353-359. https://doi.org/10.1067/mlc.2000.105617
  14. Ishimitsu, T., T. Honda, S. Ohta, A. Akashiba, T. Takahashi, T. Kameda, M. Yoshii, J. Minami, M. Takahashi, H. Ono and H. Matsuoka. 2006. Cardiorenal protective effects of yearlong antihypertensive therapy with a angiotensin-converting enzyme inhibitor or a calcium channel blocker in spontaneously hypertensive rat. Am. J. Hyperten. 19:1233-1240. https://doi.org/10.1016/j.amjhyper.2006.05.019
  15. Miguel, M., I. Recio, J. A. Gomez-Ruiz, M. Ramos and R. Lopez-Fandino. 2004. Angiotensin I-converting enzyme inhibitory activity of peptides derived from egg white proteins by enzymatic hydrolysis. J. Food Prot. 67:1914-1920. https://doi.org/10.4315/0362-028X-67.9.1914
  16. Moalic, J. M., J. Bercovici and B. Swynghedauw. 1984. Moysin heavy chain and actin fractional rates of synthesis in normal and overload rat heart ventricles. J. Mol. Cell Cardiol. 16:875-884. https://doi.org/10.1016/S0022-2828(84)80024-3
  17. Jang, A. and M. Lee. 2005. Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Sci. 69:653-661. https://doi.org/10.1016/j.meatsci.2004.10.014
  18. Johnston, C. I., L. M. Burrell, R. Perich, K. Jandeleit and B. Jackson. 1992. The tissue renin-angiotensin system and its functional role. Clin. Exp. Pharmacol. Physiol. 19:1-5.
  19. Muguruma, M., K. Katayama, H. Fuchu and M. Sugiyama. 2003. Peptic hydrolysate of porcine crude myosin has many active fractions inhibiting angiotensin I-converting enzyme. Asian-Aust. J. Anim. Sci. 16:1384-1389. https://doi.org/10.5713/ajas.2003.1384
  20. Jung, W. K., E. Mendis, J. Y. Je, P. J. Park, B. W. Son, H. C. Kim, Y. K. Choi and S. K. Kim. 2006. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem. 94:26-32. https://doi.org/10.1016/j.foodchem.2004.09.048
  21. Ondetti, M. A., B. Rubin and D. W. Cushman. 1977. Design of specific inhibition of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Sci. 196:441-444. https://doi.org/10.1126/science.191908
  22. Ondetti, M. A., N. J. Williams, E. F. Sabo, J. Pluvec, E. R. Weaver and O. Kocy. 1971. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca: isolation, elucidation of structure and synthesis. Biochem. 10:4033-4042. https://doi.org/10.1021/bi00798a004
  23. Kannel, W. B. 1996. Blood pressure as a cardiovascular risk factor. J. Am. Med. Assoc. 275:1571-1576. https://doi.org/10.1001/jama.275.20.1571
  24. Katayama, K., H. Fuchu, A. Sakata, S. Kawahara, K. Yamauchi, Y. Kawamura and M. Muguruma. 2003. Angiotensin I-converting enzyme inhibitory activities of porcine skeletal muscle proteins following enzyme digestion. Asian-Aust. J. Anim. Sci. 16:417-424. https://doi.org/10.5713/ajas.2003.417
  25. Perski, A., A. Hamsten, K. Lindvall and T. Theorell. 1988. Heart rate correlates with severity of coronary atherosclerosis in young postinfarction patients. Am. Heart J. 116:1369-1373. https://doi.org/10.1016/0002-8703(88)90469-3
  26. Saiga, A., T. Okumura, T. Makihara, S. Katsuta, T. Shimizu, R. Yamada and T. Nishimura. 2003. Angiotensin I-Converting enzyme inhibitory peptides in a hydrolyzed chicken breast muscle extract. J. Agric. Food Chem. 51:1741-1745. https://doi.org/10.1021/jf020604h
  27. Laragh, J. H., L. Bear, H. R. Brunner, F. G. Buhler, J. E. Ealey and E. D. Vaughan. 1972. Renin, angiotensin and aldosterone system in pathogenesis and management of hypertensive vascular disease. Am. J. Med. 52:633-652. https://doi.org/10.1016/0002-9343(72)90054-X
  28. Sipola, M., P. Finckenberg, J. Santisteban, R. Korpela, H. Vapaatalo and M. L. Nurminen. 2001. Long-term intake of milk peptides attenuates development of hypertension in spontaneously hypertensive rats. J. Physiol. Pharmacol. 52: 745-754.
  29. Li, G., G. Le, Y. Shi and S. Shrestha. 2004. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr. Res. 24:469-486. https://doi.org/10.1016/S0271-5317(04)00058-2
  30. Tsutsui, H., Y. Ishibashi, M. Takahashi, T. Namba, H. Tagawa, K. I. Yoshida and A. Takeshita. 1999. Chronic colchicine administration attenuates cardiac hypertrophy in spontaneously hypertensive rats. J. Mol. Cell Cardiol. 31:1203-1213. https://doi.org/10.1006/jmcc.1999.0953
  31. Lee, K. J., S. B. Kim, J. S. Ryu, H. S. Shin and J. W. Lim. 2005. Separation and purification of angiotensin converting enzyme inhibitory peptides derived from goat`s milk casein hydrolysates. Asian-Aust. J. Anim. Sci. 18:741-746. https://doi.org/10.5713/ajas.2005.741
  32. Turner, A. J. and N. M. Hooper. 2002. The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol. Sci. 23:177-183. https://doi.org/10.1016/S0165-6147(00)01994-5
  33. Materson, B. J., D. J. Reda and D. W. Williams. 1998. Comparison of effects of antihypertensive drugs on heart rate: changes from baseline by baseline group and over time. Am. J. Hypertens. 11:597-601. https://doi.org/10.1016/S0895-7061(97)00495-0
  34. Vercruysse, L., J. V. Camp and G. Smagghe. 2005. ACE inhibitory peptides derived from enzymatic hydrolysates of animal muscle protein: A review. J. Agric. Food Chem. 53:8106-8115. https://doi.org/10.1021/jf0508908
  35. Materson, B. J., D. J. Reda and D. W. Williams. 1999. Effects of antihypertensive single-drug therapy on heart rate. Am. J. Hypertens. 12: 9-11. https://doi.org/10.1016/S0895-7061(99)80036-3
  36. Wu, J. and X. Ding. 2001. Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats. J. Agric. Food Chem. 49:501-506. https://doi.org/10.1021/jf000695n
  37. Miguel, M., R. Lopez-Fandino, M. Ramos and A. Aleixandre. 2005. Short-term effect of egg white hydrolysate products on arterial blood pressure of hypertensive rats. Br. J. Nutr. 94: 731-737. https://doi.org/10.1079/BJN20051570
  38. Miguel, M., R. Lopez-Fandino, M. Ramos and A. Aleixandre. 2006. Long-term intake of egg white hydrolysate attenuates the development of hypertension in spontaneously hypertensive rats. Life Sci. 78:2960-2966. https://doi.org/10.1016/j.lfs.2005.11.025
  39. Yang, H. Y., S. C. Yang, J. R. Chen, Y. H. Tzeng and B. C. Han. 2004. Soybean protein hydrolysate prevents the development of hypertension in spontaneously hypertensive rats. Br. J. Nutr. 92:507-512. https://doi.org/10.1079/BJN20041218

피인용 문헌

  1. Increased Inhibition of Angiotensin Converting Enzyme (ACE) Obtained from Indonesian Buffalo Meat Protein Using SEP-PAK Plus C18 vol.17, pp.9, 2018, https://doi.org/10.3923/pjn.2018.434.440