탄소나노섬유 및 RuO2가 폴리아닐린의 초고용량 캐폐시턴스 특성에 미치는 효과

Electrochemical Properties of Polyaniline with Carbon Nanotube and RuO2 as Supercapacitor Electrodes

  • 윤여일 (한밭대학교 응용화학생명공학부) ;
  • 고장면 (한밭대학교 응용화학생명공학부)
  • Yoon, Yu Il (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Ko, Jang Myoun (Division of Applied Chemistry and Biotechnology, Hanbat National University)
  • 투고 : 2008.02.26
  • 심사 : 2008.04.13
  • 발행 : 2008.10.31

초록

Polyaniline(PAN), multi-walled carbon nanotube(CNT)/PAN, $CNT/PAN/RuO_2$로 구성된 초고용량캐폐시터 전극을 제조하여 cyclic voltammetry(CV)를 이용하여 1 M $H_2SO_4$ 수용액에서 캐패시턴스 특성을 조사하였다. PAN, CNT/PAN 그리고 $CNT/PAN/RuO_2$ 복합전극은 높은 주사속도인 1,000 mV/s에서 199, 304, 392 F/g의 비용량을 각각 나타내었다. 수명시험 결과, $CNT/PAN/RuO_2$, CNT/PAN, PAN 전극은 10,000 번의 싸이클에서 각각 61, 66 그리고 51%의 초기용량을 유지하였다. PAN 전극은 CNT와 복합화하여 축전용량 및 수명특성을 향상시킬 수 있으며, $RuO_2$ 도입은 축전용량 향상에는 기여하나 수명 증가 효과는 미미하였다.

Prepared are three types of composite supercapacitor electrode, such as electroactive polyaniline(PAN), PAN/multi-walled carbon nanotube(CNT), and $CNT/PAN/RuO_2$. Cyclic voltammetry was performed to investigate the supercapacitive properties of these electrodes in an electrolyte solution of 1.0M $H_2SO_4$. The $CNT/PAN/RuO_2$ electrode showed the highest specific capacitance at all scan rates(e.g., 441 and $392F\;g^{-1}$ at 100 and $1,000mV\;s^{-1}$, respectively). In cycle performance, however, the PAN/CNT electrode demonstrated the best capacitance retention (66%) at $10^4th$ cycle.

키워드

참고문헌

  1. Morimoto, T., Hiratsuka, K., Sanada, Y. and Kurihara, K., "Electric Double Layer Capacitor Using Organic Electrolyte," J. of Power Sources, 60(2), 239-247(1996) https://doi.org/10.1016/S0378-7753(96)80017-6
  2. Ingram, M. D., Pappin, A. J., Delalande, F., Poupard, D. and Terzulli, G., "Development of Electrochemical Capacitors Incorporating Processable Polymer Gel Electrolytes," Electrochim. Acta, 43(10-11), 1601-1605(1998) https://doi.org/10.1016/S0013-4686(97)10060-3
  3. Reddy, R. N. and Reddy, R. G., "Sol-gel $MnO_2$ as an Electrode Material for Electrochemical Capacitors," J. Power Sources, 124(1), 330-337(2003) https://doi.org/10.1016/S0378-7753(03)00600-1
  4. Wan, C., Azumi, K. and Konno, H., "Hydrated Mn(IV) Oxide-exfoliated Graphite Composites for Electrochemical Capacitor," Electrochim. Acta, 52(9), 3061-3066(2007) https://doi.org/10.1016/j.electacta.2006.09.039
  5. Li, J., Wang, X., Huang, Q., Gamboa, S. and Sebastian, P. J., "A New Type of $MnO_2xH_2O/CRF$ Composite Electrode for Supercapacitors," J. Power Sources, 160(2), 1501-1505(2006) https://doi.org/10.1016/j.jpowsour.2006.02.045
  6. Sivakkumar, S. R., Ko, J. M., Kim, D. Y., Kim, B. C. and Wallace, G. G., "Performance Evaluation of CNT/polypyrrole/$MnO_2$ Composite Electrodes for Electrochemical Capacitors," Electrochim. Acta, 52(25), 7377-7385(2007) https://doi.org/10.1016/j.electacta.2007.06.023
  7. Prabaharan, S. R. S., Vimala, R. and Zainal, Z., "Nanostructured Mesoporous Carbon as Electrodes for Supercapacitors," J. Power Sources, 161(1), 730-736(2006) https://doi.org/10.1016/j.jpowsour.2006.03.074
  8. Takasu, Y. and Murakami, Y., "Design of Oxide Electrodes with Large Surface Area," Electrochim. Acta, 45(25-26), 4135-4141(2000) https://doi.org/10.1016/S0013-4686(00)00534-X
  9. Hu, C.-C. and Tsou, T.-W., "Capacitive and Textural Characteristics of Hydrous Manganese Oxide Prepared by Anodic Deposition," Electrochim. Acta, 47(21), 3523-3532(2002) https://doi.org/10.1016/S0013-4686(02)00321-3
  10. Shinomiya, T., Gupta, V. and Miura, N., "Effects of Electrochemical-deposition Method and Microstructure on the Capacitive Characteristics of Nano-sized Manganese Oxide," Electrochim. Acta, 51(21), 4412-4419(2006) https://doi.org/10.1016/j.electacta.2005.12.025
  11. Broughton, J. N. and Brett, M. J., "Variations in $MnO_2$ Electrodeposition for Electrochemical Capacitors," Electrochim. Acta, 50(24), 4814-4819(2005) https://doi.org/10.1016/j.electacta.2005.03.006
  12. Mi, H., Zhang, X., An, S., Ye, X. and Yang, S., "Microwave-assisted Synthesis and Electrochemical Capacitance of Polyaniline/multi-wall Carbon Nanotubes Composite," Electrochemistry Communications, 9(12), 2859-2862(2007) https://doi.org/10.1016/j.elecom.2007.10.013