Kinetic Analysis of the MAPK and PI3K/Akt Signaling Pathways

  • Suresh, Babu CV (Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology) ;
  • Babar, Sheikh Md. Enayetul (Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology) ;
  • Song, Eun Joo (Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology) ;
  • Oh, Eulsik (Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology) ;
  • Yoo, Young Sook (Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology)
  • Received : 2007.08.29
  • Accepted : 2007.12.28
  • Published : 2008.05.31

Abstract

Computational modeling of signal transduction is currently attracting much attention as it can promote the understanding of complex signal transduction mechanisms. Although several mathematical models have been used to examine signaling pathways, little attention has been given to crosstalk mechanisms. In this study, an attempt was made to develop a computational model for the pathways involving growth-factor-mediated mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3'-kinase/protein kinase B (PI3K/Akt). In addition, the dynamics of the protein activities were analyzed based on a set of kinetic data. The simulation approach integrates the information on several levels and predicts systems behavior. The in-silico analysis conducted revealed that the Raf and Akt pathways act independently.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology, Korea Institute of Science and Technology

References

  1. Abraham, D., Podar, K., Pacher, M., Kubicek, M., Welzel, N., Hemmings, B.A., Dilworth, S.M., Mischak, H., Kolch, W., and Baccarini, M. (2000). Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J. Biol. Chem. 275, 22300-22304 https://doi.org/10.1074/jbc.M003259200
  2. Andjelkovic, M., Maira, S.M., Cron, P., Parker, P.J., and Hemmings, B.A. (1999). Domain swapping used to investigate the mechanism of protein kinase B regulation by 3-phosphoinositide- dependent protein kinase 1and Ser473 kinase. Mol. Cell. Biol. 19, 5061-5072 https://doi.org/10.1128/MCB.19.7.5061
  3. Butcher, E.C., Berg, E.L., and Kunkel, E.J. (2000). Systems biology in drug discovery. (2004). Nat. Biotechnol. 22, 1253-1259 https://doi.org/10.1038/nbt1017
  4. Carbone, D.P. (2003). Epidermal growth factor receptor overexpression: The importance of context. J. Clin. Oncol. 21, 4268-4269 https://doi.org/10.1200/JCO.2003.05.988
  5. Chan, T.O., Rittenhouse, S.E., and Tsichlis, P.N. (1999). Akt/ PKB and other D3 phosphoinositide-regulated kinases: Kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem. 68, 965-1014 https://doi.org/10.1146/annurev.biochem.68.1.965
  6. Chiu, D., Ma, K., Scott, A., and Duronio, V. (2005). Acute activation of Erk1/Erk2 and protein kinase B/akt proceed by independent pathways in multiple cell types. FEBS J. 272, 4372-4384 https://doi.org/10.1111/j.1742-4658.2005.04850.x
  7. Cho, K.H., and Wolkenhauer, O. (2003). Analysis and modelling of signal transduction pathways in systems biology. Biochem. Soc. Trans. 31, 1503-1509 https://doi.org/10.1042/BST0311503
  8. Cho, S., Park, S.G., Lee, D.H., and Park, B.C. (2004). Proteinprotein interaction networks: from interactions to networks. J. Biochem. Mol. Biol. 37, 45-52
  9. Cummings, A., and Kavlock, R.A. (2005). Systems biology approach to developmental toxicology. Reprod. Toxicol. 19, 281-290 https://doi.org/10.1016/j.reprotox.2004.10.001
  10. Ferby, I.M., Waga, I., Sakanaka, C., Kume, K., and Shimizu, T. (1994). Wortmannin inhibits mitogen-activated protein kinase activation induced by platelet-activating factor in guinea pig neutrophils. J. Biol. Chem. 269, 30485-30488
  11. Gerhardt, C.C., Gros, J., Strosberg, A.D., and Issad, T. (1999). Stimulation of the extracellular signal-regulated kinase 1/2 pathway by human Beta-3 adrenergic receptor: new pharmacological profile and mechanism of activation. Mol. Pharmacol. 55, 255-262 https://doi.org/10.1124/mol.55.2.255
  12. Hao, N., Behar, M., Elston, T.C., and Dohlman, H.G. (2007). Systems biology analysis of G protein and MAP kinase signaling in yeast. Oncogene 26, 3245-3266
  13. Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yumoto, N., Ichikawa, M., Kim, J.H., Saito, K., Saeki, M., Shirouzu, M., et al. (2003). A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signaling. Biochem. J. 373, 451-463 https://doi.org/10.1042/BJ20021824
  14. Ivaska, J., Nissinen, L., Immonen, N., Eriksson, J.E., Kähäri, V.M., and Heino, J. (2002). Integrin ${\alpha} 2{\beta}1$ promotes activation of protein phosphatase 2A and dephosphorylation of Akt and glycogen synthase kinase $3{\beta}$. Mol. Cell. Biol. 22, 1352-1359 https://doi.org/10.1128/MCB.22.5.1352-1359.2002
  15. Kalisch, B.E., Demeris, C.S., Ishak, M., and Rylett, R.J. (2003). Modulation of nerve growth factor-induced activation of MAP kinase in PC12 cells by inhibitors of nitric oxide synthase. J. Neurochem. 87, 1321-1332 https://doi.org/10.1111/j.1471-4159.2003.02057.x
  16. Kao, S., Jaiswal, R.K., Kolch, W., and Gary, E. (2001). Identification of the mechanisms regulating the differential activation of the MAPK cascade by epidermal growth factor and nerve growth factor in PC12 cells. J. Biol. Chem. 276, 18169-8177 https://doi.org/10.1074/jbc.M008870200
  17. Kim, A.H., Khursigara, G., Sun, X., Franke, T.F., and Chao, M.V. (2001). Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol. Cell. Biol. 21, 893-901 https://doi.org/10.1128/MCB.21.3.893-901.2001
  18. King, W.G., Mattaliano, M.D., Chan, T.O., Tsichlis, P.N., and Brugge, J.S. (1997). Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol. Cell. Biol. 17, 4406-4418 https://doi.org/10.1128/MCB.17.8.4406
  19. Kitano, H. (2002). Computational systems biology. Nature 420, 206-210 https://doi.org/10.1038/nature01254
  20. Liu, E.T. (2005). Systems biology, integrative biology, predictive biology. Cell 121, 505-506 https://doi.org/10.1016/j.cell.2005.04.021
  21. Lopez-Llasaca, M., Crespo, P., Pellicci, P.G., Gutkind, J.S., and Wetzker, R. (1997). Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase. Science 275, 394-397 https://doi.org/10.1126/science.275.5298.394
  22. Marshall, C.J.S. (1995). Pecificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signalregulated kinase activation. Cell 80, 179-185 https://doi.org/10.1016/0092-8674(95)90401-8
  23. McCubrey, J.A., Leem, J.T., Steelman, L.S., Blalock, W.L., Moye, P.W., Chang, F., Pearce, M., Shelton, J.G., White, M.K., Franklin, R.A., et al. (2001). Interactions between the PI3K and Raf signaling pathways can result in the transformation of hematopoietic cells. Cancer Detect. Prev. 25, 375-393
  24. Mendes, P. (1993). GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput. Appl. Biosci. 5, 563-571
  25. Mendes, P. (1997). Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends. Biochem. Sci. 9, 361-363
  26. Moelling, K., Schad, K., Bosse, M., Zimmermann, S., and Schweneker, M. (2002). Regulation of Raf-Akt cross-talk. J. Biol. Chem. 277, 31099-31106 https://doi.org/10.1074/jbc.M111974200
  27. Newman, J.R., and Weissman, J.S. (2006). Systems biology: many things from one. Nature 444, 561-562 https://doi.org/10.1038/nature05407
  28. Nicholson, J.K. (2006). Global systems biology, personalized medicine and molecular epidemiology. Mol. Syst. Biol. 2, 52
  29. Oshima, M., Sithanandam, G., Rapp, U.P., and Guroff, G. (1991). The phosphorylation and activation of B-raf in PC12 cells stimulated by nerve growth factor. J. Biol. Chem. 266, 23753-23760
  30. Qiu, D., Mao, L., Kikuchi, S., and Tomita, M. (2004). Sustained MAPK activation is dependent on continual NGF receptor regeneration. Dev. Growth Differ. 46, 393-403 https://doi.org/10.1111/j.1440-169x.2004.00756.x
  31. Rajasethupathy, P., Vayttaden, S.J., and Bhalla, U.S. (2005). Systems modeling: a pathway to drug discovery. Curr. Opin. Chem. Biol. 9, 400-406 https://doi.org/10.1016/j.cbpa.2005.06.008
  32. Rommel, C., Clarke, B.A., Zimmermann, S., Nuñez, L., Rossman, R., Reid, K., Moelling, K., Yancopoulos, G.D., and Glass, D.J. (1999). Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286, 1738-1741 https://doi.org/10.1126/science.286.5445.1738
  33. Sasagawa, S., Ozaki, Y., Fujita, K., and Kuroda, S. (2005). Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat. Cell Biol. 7, 365-373 https://doi.org/10.1038/ncb1233
  34. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., and Muller, G. (2002). Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20, 370-375 https://doi.org/10.1038/nbt0402-370
  35. Suresh Babu, C.V., Yoon, S., Nam, H.-S., and Yoo, Y.S. (2004). Simulation and sensitivity analysis of phosphorylation of EGFR signal transduction pathway in PC12 cell model. Sys. Biol. 1, 213-221 https://doi.org/10.1049/sb:20045023
  36. Sutor, S.L., Vroman, B.T., Armstrong, E.A.R., Abraham, T., and Karnitz, L.M. (1999). A phosphatidylinositol 3-kinasedependent pathway that differentially regulates c-Raf and ARaf. J. Biol. Chem. 274, 7002-7010 https://doi.org/10.1074/jbc.274.11.7002
  37. Takahashi-Tezuka, M., Yoshida, Y., Fukada, T., Ohtani, T., Yamanaka, Y., Nishida, K., Nakajima, K., Hibi, M., and Hirano, T. (1998). Gab1 acts as an adapter molecule linking the cytokine receptor gp130 to ERK mitogen activated protein kinase. Mol. Cell. Biol. 18, 4109-4117 https://doi.org/10.1128/MCB.18.7.4109
  38. Tanke, H.J. (2007). Genomics and proteomics: the potential role of oral diagnostics. Ann. NY Acad. Sci. 1098, 330-334 https://doi.org/10.1196/annals.1384.042
  39. Tenzer, A., Zingg, D., Rocha, S., Hemmings, B., Fabbro, D., Glanzmann, C., Schubiger, P.A., Bodis, S., and Pruschy, M. (2001). The phosphatidylinositide 3′-kinase/Akt survival pathway is a target for the anticancer and radiosensitizing agent pkc412, an inhibitor of protein kinase C. Cancer Res. 61, 8203-8210
  40. Tuttle, R.L., Gill, N.S., Pugh, W., Lee, J.P., Koeberlein, B., Furth, E.E., Polonsky, K.S., Naji, A., and Birnbaum, M.J. (2001). Regulation of pancreatic ${\beta}$-cell growth and survival by the serine/threonine protein kinase Akt1/$PKB{\alpha}$. Nat. Med. 7, 1133-1137 https://doi.org/10.1038/nm1001-1133
  41. Ugi, S., Imamura, T., Maegawa, H., Egawa, K., Yoshizaki, T., Shi, K., Obata, T., Ebina, Y., Kashiwagi, A., and Olefsky, J.M. (2004). Protein phosphatase 2A negatively regulates insulin's metabolic signaling pathway by inhibiting Akt (Protein Kinase B) activity in 3T3-L1 adipocytes. Mol. Cell. Biol. 24, 8778-8789 https://doi.org/10.1128/MCB.24.19.8778-8789.2004
  42. Van Kanegan, M.J., Adams, D.G., Wadzinski, B.E., and Strack, S. (2005). Distinct protein phosphatase 2A heterotrimers modulate growth factor signaling to extracellular signalregulated kinases and Akt. J. Biol. Chem. 280, 36029-36036 https://doi.org/10.1074/jbc.M506986200
  43. Vanhaesebroeck, B., and Waterfield, M.D. (1999). Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell Res. 253, 239-254 https://doi.org/10.1006/excr.1999.4701
  44. von Gise, A., Lorenz, P., Wellbrock, C., Hemmings, B., Berberich- Siebelt, F., Rapp, U.R., and Troppmair, J. (2001). Apoptosis suppression by Raf-1 and MEK1 requires MEKand phosphatidylinositol 3-kinase-dependent signals. Mol. Cell. Biol. 21, 2324-2336 https://doi.org/10.1128/MCB.21.7.2324-2336.2001
  45. Wells, A. (2000). The epidermal growth factor receptor (EGFR)- a new target in cancer therapy. Signal 1, 4-11
  46. Wennstrom, S., and Downward, J. (1999). Role of phosphoinositide 3-kinase in activation of Ras and mitogen-activated protein kinase by epidermal growth factor. Mol. Cell. Biol. 19, 4279-4288 https://doi.org/10.1128/MCB.19.6.4279
  47. Wixler, V., Smola, U., Schuler, M., and Rapp, U. (1996). Differential regulation of Raf isozymes by growth versus differentiation inducing factors in PC12 pheochromocytoma cells. FEBS Lett. 385, 131-137
  48. Yamada, S., Shiono, S., Joo, A., and Yoshimura, A. (2003). Control mechanism of JAK/STAT signal transduction pathway. FEBS Lett. 534, 190-196 https://doi.org/10.1016/S0014-5793(02)03842-5
  49. Yamada, S., Taketomi, T., and Yoshimura, A. (2004). Model analysis of difference between EGF pathway and FGF pathway. Biochem. Biophys. Res. Commun. 314, 1113-1120 https://doi.org/10.1016/j.bbrc.2004.01.009
  50. Zi, Z., Cho, K.H., Sung, M.H., Xia, X., Zheng, J., and Sun, Z. (2005). In silico identification of the key components and steps in IFN-gamma induced JAK-STAT signaling pathway. FEBS Lett. 579, 1101-1108 https://doi.org/10.1016/j.febslet.2005.01.009
  51. Zimmermann, S., and Moelling, K. (1999). Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286, 1741-1744 https://doi.org/10.1126/science.286.5445.1741