DOI QR코드

DOI QR Code

Detection of QTL on Bovine X Chromosome by Exploiting Linkage Disequilibrium

  • 투고 : 2007.08.22
  • 심사 : 2007.11.11
  • 발행 : 2008.05.01

초록

A fine-mapping method exploiting linkage disequilibrium was used to detect quantitative trait loci (QTL) on the X chromosome affecting milk production, body conformation and productivity traits. The pedigree comprised 22 paternal half-sib families of Black-and-White Holstein bulls in the Netherlands in a grand-daughter design for a total of 955 sons. Twenty-five microsatellite markers were genotyped to construct a linkage map on the chromosome X spanning 170 Haldane cM with an average inter-marker distance of 7.1 cM. A covariance matrix including elements about identical-by-descent probabilities between haplotypes regarding QTL allele effects was incorporated into the animal model, and a restricted maximum-likelihood method was applied for the presence of QTL using the LDVCM program. Significance thresholds were obtained by permuting haplotypes to phenotypes and by using a false discovery rate procedure. Seven QTL responsible for conformation types (teat length, rump width, rear leg set, angularity and fore udder attachment), behavior (temperament) and a mixture of production and health (durable prestation) were detected at the suggestive level. Some QTL affecting teat length, rump width, durable prestation and rear leg set had small numbers of haplotype clusters, which may indicate good classification of alleles for causal genes or markers that are tightly associated with the causal mutation. However, higher maker density is required to better refine the QTL position and to better characterize functionally distinct haplotypes which will provide information to find causal genes for the traits.

키워드

참고문헌

  1. Andersson, L. 2001. Genetic dissection of phenotypic diversity in farm animals. Nature Reviews Genetics 2:130-138. https://doi.org/10.1038/35052563
  2. Benjamini, Y. and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57:289-300.
  3. Blott, S., J.-J. Kim, S. Moisio, A. Schmidt-Kuntzel, A. Cornet, P. Berzi, N. Cambisano, C. Ford, B. Grisart, D. Johnson, L. Karim, P. Simon, R. Snell, R. Spelman, J. Wong, J. Vilkki, M. Georges, F. Farnir and W. Coppieters. 2002. Molecular dissection of a QTL: a phenylalanine to tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genet. 163:253-266.
  4. Farnir, F., W. Coppieters, J.-J. Arranz, P. Berzi, N. Cambisano, B. Grisart, L. Karim, F. Marcq, L. Moreau, M. Mni, C. Nezer, P. Simon, P. Vanmanshoven, D. Wagenaar and M. Georges. 2000. Extensive genome-wide linkage disequilibrium in cattle. Genome Res. 10:220-227. https://doi.org/10.1101/gr.10.2.220
  5. Georges, M. and L. Andersson. 1996. Livestock genomics comes of age. Genome Res. 6:907-921. https://doi.org/10.1101/gr.6.10.907
  6. Harlizius, B., A. P. Rattink, D. J. de Koning, M. Faivre, R. G. Joosten, J. A. M. van Arendonk and M. A. M. Groenen. 2000. The X chromosome harbors quantitative trait loci for backfat thickness and intramuscular fat content in pigs. Mamm. Genome 11:800-802.
  7. Harmegnies, N., F. Farnir, F. Davin, I. Geerts, N. Buys, M. Georges and W. Coppieters. 2006. Measuring the extent of linkage disequilibrium in commercial pig populations. Anim. Genet. 37:225-231. https://doi.org/10.1111/j.1365-2052.2006.01438.x
  8. Johnson, D. L. and R. Thompson. 1995. Restricted maximum likelihood estimation of variance components for univariate Animal Models using sparse matrix techniques and average information. J. Dairy. Sci. 78:449-456. https://doi.org/10.3168/jds.S0022-0302(95)76654-1
  9. Kim, E. H., B. H. Choi, K. S. Kim, C. K. Lee, B. W. Cho, T.-H. Kim and J.-J. Kim. 2007. Detection of Mendelian and parentof-origin quantitative trait loci in a cross between Korean Native Pig and Landrace I. growth and body composition traits. Asian-Aust. J. Anim. Sci. 20:669-676. https://doi.org/10.5713/ajas.2007.669
  10. Kim, J.-J. and M. Georges. 2002. Evaluation of a new finemapping method exploiting linkage disequilibrium: a case study analysing a QTL with major effect on milk composition on bovine chromosome 14. Asian-Aust. J. Anim. Sci. 15:1250-1256. https://doi.org/10.5713/ajas.2002.1250
  11. Kim, J.-J. and F. Farnir. 2006. Evaluation of a fine-mapping method exploiting linkage disequilibrium in livestock populations: simulation study. Asian-Aust. J. Anim. Sci. 19: 1702-1705. https://doi.org/10.5713/ajas.2006.1702
  12. Knott, S. A., L. Marklund, C. S. Haley, K. Andersson, W. Davies, H. Ellegren, M. Fredholm, I. Hansson, B. Hoyheim, K.Lundstrom, M. Moller and L. Andersson. 1998. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and Large White pigs. Genet. 149:1069-1080.
  13. Lander, E. and L. Kruglyak. 1995. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11:241-247. https://doi.org/10.1038/ng1195-241
  14. Lee, H., J. C. M. Dekkers, M. Soller, M. Malek, R. L. Fernando and M. F. Rothschild. 2002. Application of the false discovery rate to quantitative trait loci interval mapping with multiple traits. Genet. 161:905-914.
  15. Malek, M., J. C. M. Dekkers, H. K. Lee, T. J. Baas and M. F. Rothschild. 2001. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition. Mamm. Genome 12: 630-636. https://doi.org/10.1007/s003350020018
  16. McRae, A. F., J. C. McEwan, K. G. Dodds, T. Wilson, A. M. Crawford and J. Slate. 2002. Linkage disequilibrium in domestic sheep. Genet. 160:1113-1122.
  17. Meuwissen, T. H. E. and M. E. Goddard. 2000. Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genet. 155:421-430.
  18. Meuwissen, T. H. E. and M. E. Goddard. 2001. Prediction of identity by descent probabilities from marker-haplotypes. Genet. Sel. Evol. 33:605-634. https://doi.org/10.1186/1297-9686-33-6-605
  19. Mount, D. W. 2001. Bioinformatics: Sequence and Genome analysis. Cold Spring Harbor Laboratory Press, New York, New York.
  20. Sandor, C., F. Farnir, S. Hansoul, W. Coppieters, T. Meuwissen and M. Georges. 2006. Linkage disequilibrium on the bovine X chromosome: characterization and use in quantitative trait locus mapping. Genet. 173:1777-1786. https://doi.org/10.1534/genetics.106.059329
  21. Schnabel, R. D., J.-J. Kim, M. S. Ashwell, T. S. Sonstegard, C. P. Van Tassell, E. E. Connor and J. F. Taylor. 2005. Fine-mapping milk production quantitative trait loci on BTA6: analysis of the bovine osteopontin gene. P.N.A.S. 102:6896-6901. https://doi.org/10.1073/pnas.0502398102
  22. Self, S. G. and K.-Y. Liang. 1987. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc. 82:605-610. https://doi.org/10.2307/2289471
  23. Van Raden, P. M. and G. R. Wiggans. 1991. Derivation calculation and use of national animal model information. J. Dairy Sci. 74:2737-2746. https://doi.org/10.3168/jds.S0022-0302(91)78453-1
  24. Weller, J. I., Y. Kashi and M. Soller. 1990. Power of daughter and granddaughter designs for genetic mapping of quantitative traits in dairy cattle using genetic markers. J. Dairy Sci. 73:2525-2537. https://doi.org/10.3168/jds.S0022-0302(90)78938-2
  25. Weller, J. I., J. Z. Song, D. W. Heyen, H. A. Lewin and M. Ron.1998. A new approach to the problem of multiple comparisons in the genetic dissection of complex traits. Genet. 150:1699-1706.

피인용 문헌

  1. Genetic Evaluation and Calculating Daughter Yield Deviation of Bulls in Iranian Holstein Cattle for Milk and Fat Yields vol.22, pp.5, 2008, https://doi.org/10.5713/ajas.2009.80378