DOI QR코드

DOI QR Code

A New Single Nucleotide Polymorphism in the IGF-I Gene and Its Association with Growth Traits in the Nanjiang Huang Goat

  • Zhang, Chunxiang (College of Animal Science and Technology, China Agricultural University) ;
  • Zhang, Wei (College of Animal Science and Technology, China Agricultural University) ;
  • Luo, Hailing (College of Animal Science and Technology, China Agricultural University) ;
  • Yue, Wenbin (College of Animal Science and Technology, China Agricultural University) ;
  • Gao, Mingyu (College of Animal Science and Technology, China Agricultural University) ;
  • Jia, Zhihai (College of Animal Science and Technology, China Agricultural University)
  • Received : 2007.11.18
  • Accepted : 2008.02.27
  • Published : 2008.08.01

Abstract

The objectives of this study were to identify polymorphisms of insulin-like growth factor I (IGF-I) gene and to investigate their association with growth traits in Nanjiang Huang goats. Five hundred and ninety-two animals were used to detect the polymorphisms in the complete coding sequence, part of introns and the 5'-regulatory region of the IGF-I gene by means of PCR-SSCP. A new single nucleotide polymorphism (G to C transversion) was identified at intron 4 of the IGF-I gene in the goats. Two alleles and three genotypes were observed in this group. The frequency of G and C alleles was 54.6 and 45.4%, respectively. The statistical analysis showed that polymorphism of the IGF-I gene had a significant association (p<0.05) with birth weight (BW), body weight at 6 months (W6) and at 12 months (W12), heart girth at 2 months (G2), body length at 6 months (L6), wither height at 6 months (H6) and at 12 months (H12) and heart girth at 12 months (G12). The goats with genotype CC had significantly higher BW, W6, W12, G2, L6, H6, H12 and G12 than those with genotype GC and had significantly higher W12, H6, H12 and G12 than those with genotype GG. Therefore, genotype CC may be the most advantageous for growth traits in the Nanjiang Huang goat. However, no significant association between SNP genotypes and other growth traits was observed. These results indicated that the SNP marker of the IGF-I gene may be a potential molecular marker for growth traits in Nanjiang Huang goats.

Keywords

References

  1. Amills, M., N. Jimenez, D. Villalba, M. Tor, E. Molina, D. Cubilo, C. Marcos, A. Francesch, A. Sanchez and J. Estany. 2003. Identification of three single nucleotide polymorphisms in the chicken insulin-like growth factor 1 and 2 genes and their associations with growth and feeding traits. Poult. Sci. 82:1485-1493. https://doi.org/10.1093/ps/82.10.1485
  2. Arora, R. and S. Bhatia. 2006. Genetic diversity of magra sheep from India using microsatellite analysis. Asian-Aust. J. Anim. Sci. 19(7):938-942. https://doi.org/10.5713/ajas.2006.938
  3. Baker, J., J. P. Liu, E. J. Robertson and A. Efstratiadis. 1993. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75:73-82. https://doi.org/10.1016/S0092-8674(05)80085-6
  4. Baxter, R. C. 1985. The somatomedins: insulin-like growth factors. Adv. Clin. Chem. 25:49-115.
  5. Bennett, A. K., P. Y. Hester and D. E. Spurlock. 2006. Polymorphisms in vitamin D receptor, osteopontin, insulin-like growth factor 1 and insulin, and their associations with bone, egg and growth traits in a layer--broiler cross in chickens. Anim. Genet. 37:283-286. https://doi.org/10.1111/j.1365-2052.2006.01439.x
  6. Breier, B. H., P. D. Gluckman and J. J. Mass. 1988. Plasma concentrations of insulin-like growth factor I and insulin in the infant calf: ontogeny and influence of alter nutrition. J. Endocrinol. 119:43-50. https://doi.org/10.1677/joe.0.1190043
  7. Burkhard, T., K. Daniela and C. Sonia. 2005. Growth hormone/insulin-like growth factor-I system in children with chronic renal failure. Pediatr. Nephrol. 20:279-289. https://doi.org/10.1007/s00467-005-1821-0
  8. Casas, E., A. Prill, S. G. Price, A. C. Clutter and B. W. Kirkpatrick. 1997. Relationship of growth hormone and insulin-like growth factor-1 genotypes with growth and carcass traits in swine. Anim. Genet. 28:88-93. https://doi.org/10.1111/j.1365-2052.1997.00086.x
  9. Chung, E. R. and W. T. Kim. 2005. Association of SNP marker in IGF-I and MYF5 candidate genes with growth traits in Korean cattle. Asian-Aust. J. Anim. Sci. 18(8):1061-1065. https://doi.org/10.5713/ajas.2005.1061
  10. Clemmons, D. R., M. Dehoff, R. McCusker, R. Elgin and W. Busby. 1987. The role of insulin-like growth factor I in the regulation of growth. J. Anim. Sci. 65(2):168-179. https://doi.org/10.1093/ansci/65.suppl_2.168
  11. Curi, R. A., H. N. Oliveira, A. C. Silveira and C. R. Lopes. 2005a. Effects of polymorphic microsatellites in the regulatory region of IGF-I and GHR on growth and carcass traits in beef cattle. Anim. Genet. 36:58-62. https://doi.org/10.1111/j.1365-2052.2004.01226.x
  12. Curi, R. A., H. N. Oliveira, A. C. Silveira and C. R. Lopes. 2005b. Association between IGF-I, IGF-IR and GHRH gene polymorphisms and growth and carcass traits in beef cattle. Livest. Prod. Sci. 94:159-167. https://doi.org/10.1016/j.livprodsci.2004.10.009
  13. Daughaday, W. H. and P. Rotwein. 1989. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr. Rev. 10:68-91. https://doi.org/10.1210/edrv-10-1-68
  14. Dekker, J. C. M. 2004. Commercial application of marker- and gene assisted selection in livestock strategies and lessons. J. Anim. Sci. 82:313-328.
  15. DNASTAR. 2001. Introductory of the LASERGENE system. DNASTAR. Inc. Madison. USA.
  16. Duclos, M. J., C. Beccavin and J. Simon. 1999. Genetic models for study of Insulin-like growth factors (IGF) and muscle development in birds compared to mammals. Domest. Anim. Endocrinol. 17:231-243. https://doi.org/10.1016/S0739-7240(99)00040-5
  17. Froesch, E. R., C. Schmid, J. Schwander and J. Zapf. 1985. Actions of insulin-like growth factors. Annu. Rev. Physiol. 47:443-467. https://doi.org/10.1146/annurev.ph.47.030185.002303
  18. Ge, W., M. E. Davis and H. C. Hines. 1997. Two SSCP alleles identified in the 5'-flanking region of bovine IGF1 gene. Anim. Genet. 28:155-156.
  19. Ge, W., M. E. Davis, H. C. Hines, K. M. Irvin and R. C. Simmen. 2001. Association of a genetic marker with blood serum insulin-like growth factor-I concentration and growth traits in Angus cattle. J. Anim. Sci. 79:1757-1762. https://doi.org/10.2527/2001.7971757x
  20. Gluckman, P. D. 1995. The endocrine regulation of fetal growth in late gestation: the role of Insulin-like growth factors. J. Clin. Endrocrinol. Metabol. 80:1047-1050. https://doi.org/10.1210/jc.80.4.1047
  21. Harding, J. E., L. Liu, P. C. Evans and P. D. Gluckman. 1994. Insulin-like growth factor I alters feto-placental protein and carbohydrate metabolism in fetal sheep. J. Endrocrinol. 134:1509-1514. https://doi.org/10.1210/en.134.3.1509
  22. Jensen, E. C., J. H. Harding, M. K. Bauer and P. D. Gluckman. 1999. Metabolic effects of IGF-I in the growth retarded fetal sheep. J. Endrocrinol. 161:485-494. https://doi.org/10.1677/joe.0.1610485
  23. Jia, C. L., N. Li, X. B. Zhao, X. P. Zhu and Z. H. Jia. 2005. Association of single nucleotide polymorphisms in exon 6 region of BMPIP gene with litter size traits in sheep. Asian-Aust. J. Anim. Sci. 18(10):1375-1378. https://doi.org/10.5713/ajas.2005.1375
  24. Jiang, Y. L., X. Z. Fan, L. R. Xiao, R. L. Xiang, X. X. Hu, L. X. Du and C. X. Wu. 2002. Association of T-A mutation in the promoter region of myostatin gene with birth weight in Yorkshire pigs. Asian-Aust. J. Anim. Sci. 15:1543-1545. https://doi.org/10.5713/ajas.2002.1543
  25. Lan, X. Y., C. Y. Pan, H Chen, C. Z. Lei, L. S. Hua, X. B. Yang, G. Y. Qiu, R. F. Zhang and Y. Z. Lun. 2007. Ddel polymorphism in coding region of goat POU1F1 gene and its association with production traits. Asian-Aust. J. Anim. Sci. 20(9):1342-1348. https://doi.org/10.5713/ajas.2007.1342
  26. Li, C., J. Basarab, W. M. Snelling, B. Benkel, B. Murdoch, C. Hansen and S. S. Moore. 2004. Assessment of positional candidate genes myf5 and igf1 for growth on bovine chromosome 5 in commercial lines of Bos taurus. J. Anim. Sci. 82:1-7. https://doi.org/10.2527/2004.8211
  27. Liu, H. Y., N. Li, C. L. Jia, X. P. Zhu and Z. H. Jia. 2007. Effect of the polymorphisms of keratin associated protein 8.2 gene on fibre traits in inner mongolia cashmere goats. Asian-Aust. J. Anim. Sci. 20(6):821-826. https://doi.org/10.5713/ajas.2007.821
  28. Lok, F., J. A. Owens, L. Mundy, J. S. Robinson and P. C. Owens. 1996. Insulin-like growth factor I promotes growth selectively in fetal sheep in late gestation. Am. J. Physiol. 270:R1148-R1155.
  29. Mikawa, S., G. Yoshikawa, H. Aoki, Y. Yamano, H. Sakai and T. Komano. 1995. Dynamic aspects in the expression of the goat insulin-like growth factor-I (IGF-I) gene: diversity in transcription and post-transcription. Biosci. Biotechnol. Biochem. 59(1):87-92. https://doi.org/10.1271/bbb.59.87
  30. Missohou, A., E. Talaki and I. Mamam Laminon. 2006. Diversity and genetic relationships among seven West African goat breeds. Asian-Aust. J. Anim. Sci. 19(9):1245-1251. https://doi.org/10.5713/ajas.2006.1245
  31. SAS. 2001. User's Guide: Statistics. Version 8.2, Cary, NC, USA.
  32. Shoshana, Y., J. L. Liu and L. R. Derek. 2000. The growth hormone/insulin-like growth factor-I system: implications for organ growth and development. Pediatr. Nephrol. 14:544-549. https://doi.org/10.1007/s004670000363
  33. Schibler, L., D. Vaiman, A. Oustry, C. Giraud-Delville and E. P. Cribiu. 1998. Comparative gene mapping: a fine-scale survey of chromosome rearrangements between ruminants and humans. Genome Res. 8:901-915. https://doi.org/10.1101/gr.8.9.901
  34. Schwerin, M. T., G. Brockmann, J. Vanselow and H. M. Seyfert. 1995. Perspectives of molecular genome analysis in livestock improvement -an overview. Anim. Res. Dev. 42:14-26.
  35. Seo, D. S., J. S. Yun, W. J. Kang, G. J. Jeon, K. C. Hong and Y. Ko. 2001. Association of insulin-like growth factor-I (IGF-I) gene polymorphism with serum IGF-I concentration and body weight in Korean Native Ogol chicken. Asian-Aust. J. Anim. Sci. 14(7):915-921. https://doi.org/10.5713/ajas.2001.915
  36. Yakar, S., C. J. Rosen, W. G. Beamer, C. L. Ackert-Bicknell, Y. Wu, J. L. Liu, G. T. Ooi, J. Setser, J. Frystyk, Y. R. Boisclair and D. Le Roith. 2002. Circulating levels of IGF-I directly regulate bone growth and density. J. Clin. Invest. 110:771-781. https://doi.org/10.1172/JCI0215463
  37. Yilmaz, A., M. E. Davis, H. Hines and H. Chung. 2005. Detection of two nucleotide substitutions and putative promoters in the 5' flanking region of the ovine IGF-I gene. J. Appl. Genet. 46:307-309.
  38. Zapf, J. and E. R. Froesch. 1999. Insulin-like growth factor-I actions on somatic growth. In: Handbook of Physiology (Ed. J. L. Kostyo). Oxford University Press, New York.
  39. Zhou, H., A. D. Mitchell, J. P. McMurtry, C. M. Ashwell and S. J. Lamont. 2005. Insulin-like growth factor-I gene polymorphism associations with growth, body composition, skeleton integrity, and metabolic traits in chickens. Poult. Sci. 84:212-219. https://doi.org/10.1093/ps/84.2.212
  40. Zhang, E. P., Y. L. Chen, Z. F. Yuan and Y. N. Zhang. 2005. Study on body weight trait by microsatellite markers in Nanjiang Huang goat. Chinese Agric. Sci. 21(12):1-4.

Cited by

  1. PCR-SSCP Variation of IGF1 and PIT1 Genes and Their Association with Estimated Breeding Values of Growth Traits in Makooei Sheep vol.2013, pp.2090-3162, 2013, https://doi.org/10.1155/2013/272346
  2. Genetic Structuring of Nine Indian Domestic Goat Breeds Based on SNPs Identified in IGF-1 Gene vol.24, pp.2, 2013, https://doi.org/10.1080/10495398.2013.763815
  3. Sequence characterization and genetic variability analysis of GHR, IGF1, and IGFBP-3 genes in nine Indian goat breeds vol.42, pp.3, 2014, https://doi.org/10.1080/09712119.2013.875899
  4. ) gene are associated with growth-related traits in farmed Atlantic salmon vol.45, pp.5, 2014, https://doi.org/10.1111/age.12202
  5. ) vol.45, pp.6, 2014, https://doi.org/10.1111/age.12216
  6. Association of Chicken Growth Hormones and Insulin-like Growth Factor Gene Polymorphisms with Growth Performance and Carcass Traits in Thai Broilers vol.28, pp.12, 2015, https://doi.org/10.5713/ajas.15.0028
  7. Evaluation of insulin-like growth factor-I gene polymorphism in Egyptian small ruminant breeds vol.15, pp.48, 2016, https://doi.org/10.5897/AJB2016.15727
  8. vol.49, pp.2, 2018, https://doi.org/10.1111/jwas.12504
  9. Effect of the IGF-I gene polymorphism on growth, body size, carcass and meat quality traits in Coloured Polish Merino sheep vol.60, pp.2, 2008, https://doi.org/10.5194/aab-60-161-2017
  10. IGF-1 Gene Polymorphism and its Association with Cashmere Fiber Trait in Changthangi Goats vol.17, pp.12, 2008, https://doi.org/10.1080/15440478.2019.1604283
  11. Nucleotide Sequence Variation in the Insulin-Like Growth Factor 1 Gene Affects Growth and Carcass Traits in New Zealand Romney Sheep vol.40, pp.2, 2021, https://doi.org/10.1089/dna.2020.6166