A Survey on Network Survivability Models

네트워크 생존도 모형 개관

  • Published : 2008.06.30

Abstract

Survivability of a network is one of the most important issues in designing present-day communication networks. For the past few decades, a lot of researches have proposed the mathematical models to evaluate the survivability of networks. In this paper, we attempt to survey such researches and classify them based on how these researches measure the survivability of a network.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993), Network Flows, Prentice-Hall, New Jersey, U.S.A
  2. Baiou,M., Barahona, F. and Mahjoub, A.R. (2000), Separation of partition inequalities,Mathematics of Operations Research 25, 243-254 https://doi.org/10.1287/moor.25.2.243.12223
  3. Barahona, F. (1992), Separating from the dominant of the spanning tree polytope, Operational Research Letters 12, 201-203 https://doi.org/10.1016/0167-6377(92)90045-5
  4. Cardwell, R.H., Monma, C. L.,Wu, T. (1989), Computer-aided design procedures for survivable fiber optic networks, IEEE J. SAC 7, 1188-1197
  5. Cheng, E. and Cunningham,W. H. (1994), A faster algorithm for computing the strength of a network, Information Processing Letters 49, 209-212 https://doi.org/10.1016/0020-0190(94)90013-2
  6. Cosares, S., Deutch, N. D., Saniee, I., andWasem, O. J. (1995), SONET toolkit: A decision support system for designing robust and cost-effective fiber-optic networks, Interfaces 25, 20-40 https://doi.org/10.1287/inte.25.1.20
  7. Cunningham,W. H. (1985), Optimal attack and reinforcement of a network, J. of ACM 32, 549-561 https://doi.org/10.1145/3828.3829
  8. Frank, A. (1992), Augmenting graphs to meet edge-connectivity requirements, SIAM J. Disc. Math. 5(1992) 25-53 https://doi.org/10.1137/0405003
  9. Garey, M. R. and Johnson, D. S. (1976), Computers and intractability, W. H. Freeman and Company, San Francisco, U.S.A
  10. Ghare, P. M., Montgomery, D. C., and Turner, W. C. (1971), Optimal interdiction policy for a flow network, Naval Research Logistics Quarterly 18, 37-45 https://doi.org/10.1002/nav.3800180103
  11. Grotschel, M. and Monma, C. L. (1990), Integer polyhedra associated with certain network design problems with connectivity constraints, SIAM J. Disc. Math. 3, 502-523 https://doi.org/10.1137/0403043
  12. Grotschel,M.,Monma, C. L. and Stoer,M. (1992), Facets for polyhedra arising in the design of communication networks with low connectivity constraints, SIAM J. Opt. 2, 474-504 https://doi.org/10.1137/0802024
  13. Grotschel, M., Monma, C. L. and Stoer, M. (1992), Computational results with a cutting plane algorithm for designing communication networks with low connectivity constraints, Operations Research 40(1992) 309-330 https://doi.org/10.1287/opre.40.2.309
  14. Grotschel,M.,Monma, C. L. and Stoer,M. (1995), Design of survivable networks, NetworkModels, M. O. Ball et al. (eds.), North-Holland, Amsterdam, 617-672
  15. Gusfield, D. (1991), Computing the strength of a graph, SIAM Journal on Computing 20, 639-654 https://doi.org/10.1137/0220040
  16. Hong, S. -P. and Choi, B. -C. (2007), Polynomiality of sparsest cuts with fixed number of sources, Operations Research Letters 35, 739-742 https://doi.org/10.1016/j.orl.2006.12.011
  17. Hong, S. -P. and Choi, B. -C. (2007), Approximability of the k-server disconnection problem, Networks 50, 273-282 https://doi.org/10.1002/net.20203
  18. Kerivin, H. and Mahjoub A. R. (2005), Design of survivable networks: A suevey, Networks 46, 1-21 https://doi.org/10.1002/net.20072
  19. Kim, H. -J.,Myung, Y. -S., Park, Park, S., and Oh, S. -M. (2004), Lower and upper bounding strategies for the network disconnection problem, Journal of Korean OR and MS society 29, 113-125
  20. Kolar, D. J. and Wu, T. (1988), A study of survivability versus cost for several fiber network architectures, Proceedings of IEEE Int'l Conference on Communications, 61-66
  21. Lubore,S. H., Ratliff, H. D. and Sicilia, G. T. (1971), Determining the most vital link in a flow network, Naval Research Logistics Quarterly 18, 497-502 https://doi.org/10.1002/nav.3800180408
  22. Magnanti, T. L. and Raghavan, S. (2005), Strong formulations for network design problems with connectivity requirements, Networks 45, 61-79 https://doi.org/10.1002/net.20046
  23. Martel, C., Nuckolls, G. and Sniegowski, D. (2001), Computing the disconnectivity of a graph, Working paper, UC Davis
  24. Matula, D. W. and Shahrokhi, F. (1990), Sparsest cuts and bottlenecks in graphs, Discrete Applied mathematics 27, 113-123 https://doi.org/10.1016/0166-218X(90)90133-W
  25. Monma C. L. and Shallcross, D. F. (1989),Methods for designing communication networks with certain two-connected survivability constraints, Operations Research 37, 531-541 https://doi.org/10.1287/opre.37.4.531
  26. Myung, Y. -S., Kim, H. -J. and Tcha, D. -W. (1999), Design of communication networks with survivability constraints, Management Science 45, 238-252 https://doi.org/10.1287/mnsc.45.2.238
  27. Myung, Y. -S. and Kim, H. -J. (2001), An algorithm for calculating flow-based network survivability, Journal of Korean OR and MS society 26, 238-252
  28. Myung, Y. -S. and Kim, H. -J. (2004), A Cutting Plane Algorithm for Computing k-edge Survivability of a Network, European Journal of Operational Research 156, 579-589 https://doi.org/10.1016/S0377-2217(03)00135-8
  29. Myung, Y. -S. and Kim, H. -J. (2005), An algorithm for the graph disconnection problem, International Journal of Management Science 11, 49-61
  30. Myung, Y. -S. and Kim, H. -J. (2007), Network disconnection problems in a centralized network, Naval Research Logistics 54, 710-719 https://doi.org/10.1002/nav.20242
  31. Nagamochi H. and Ibaraki, T. (1992), Computing edge-connectivity in multiple and capacitated graphs, SIAM Journal on Discrete Mathematics 5, 54-66 https://doi.org/10.1137/0405004
  32. Ratliff, H. D., Sicilia G. T. and Lubore, S. H. (1975), Finding the n most vital links in flow networks, Management Science 21, 531-539 https://doi.org/10.1287/mnsc.21.5.531
  33. Schrijver, A. (2003), Combinatorial optimization, Springer-Verlag, Berlin
  34. Shmoys, D. B. (1997), Cut problems and their application to divide and conquer, Approximation Algorithms for NP-Hard Problems, D. S. Hochbaum (ed.), PWS, Boston, 192-235
  35. Vazirani, V. V. (2001) Approximation Algorithms, Springer, Berlin, 2001
  36. Wollmer, R. D. (1964), Removing arcs from a network, Operations Research 12, 934-940 https://doi.org/10.1287/opre.12.6.934
  37. Wood, R. K. (1993), Deterministic network interdiction, Mathl. Comput. Modelling 17, 1-18 https://doi.org/10.1016/0895-7177(93)90063-5
  38. Wu, T. (1992), Fiber network survivability, Artech House, Inc
  39. Wu, T., Cardwell, R. H. and W. E. Woodall, (1988a), Decreasing survivable fiber network cost using optical switches, Proceedings of IEEE Int'l Conference on Communications, 93-97
  40. Wu, T., Kolar, D. J. and Cardwell, R. H. (1988b), Survivable network architectures for broad-band fiber optic networks: model amd performance comparison, Journal of Lightwave Technology 6, 1698- 1709 https://doi.org/10.1109/50.9987