References
- Landschulz, W. H., Johnson, P. F. and McKnight, S. L. (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759-1764 https://doi.org/10.1126/science.3289117
- Baxevanis, A. D. and Vinson, C. R. (1993) Interactions of coiled coils in transcription factors: where is the specificity? Curr. Opin. Genet. Dev. 3, 278-285 https://doi.org/10.1016/0959-437X(93)90035-N
- Riechmann, J. L., Heard, J. and Martin, G. (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105-2110 https://doi.org/10.1126/science.290.5499.2105
- Hurst, H. C. (1995) Transcription factors. 1. bZIP proteins. Protein Profile 2, 105-168
- Oyama, T., Shimura, Y. and Okada, K. (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus- induced development of root and hypocotyl. Genes Dev. 11, 2983-2995 https://doi.org/10.1101/gad.11.22.2983
- Jakoby, M., Weisshaar, B., Droge-Laser, W., Tiedemann, J., Kroij, T. and Parcy, F. (2002) The family of bZIP transcription factors in Arabidopsis thaliana. Trends Plant Sci. 7, 106-111 https://doi.org/10.1016/S1360-1385(01)02223-3
- Despres, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D. and Fobert., P. (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15, 2181-2191 https://doi.org/10.1105/tpc.012849
- Finkelstein, R. and Lynch, T. (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12, 599-609 https://doi.org/10.1105/tpc.12.4.599
- Heinekamp, T., Kuhlmann, M., Lenk, A., Strathmann, A. and Droge-Laser, W. (2002) The tobacco bZIP transcription factor BZI-1 binds to G-box elements in the promoters of phenylpropanoid pathway genes in vitro, but it is not involved in their regulation in vivo. Mol. Genet. Genomics 267, 16-26 https://doi.org/10.1007/s00438-001-0636-3
- Strathmann, M., Kuhlmann, M., Heinekamp, T. and Droge-Laser, W. (2001) BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2, BZI-3/TBZF and BZI-4, and is functionally involved in flower development. Plant J. 28, 397-408 https://doi.org/10.1046/j.1365-313X.2001.01164.x
- Modolo, L. V., Cunha, F. Q., Braga, M. R. and Salgado, I. (2002) Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor. Plant Physiol. 130, 1288-1297 https://doi.org/10.1104/pp.005850
- Crawford, N. M., Galli, M., Tischner, R., Heimer, Y. M., Okamoto, M. and Mack, A. (2006) Plant nitric oxide synthase: back to square one. Trends in Plant Sci. 11, 526-527 https://doi.org/10.1016/j.tplants.2006.09.007
- Stankovic, B., Vian, A., Henry-Vian, C. and Davies, E. (2000) Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA-binding protein. Planta 212, 60-66 https://doi.org/10.1007/s004250000362
- Kusano, T., Sugawara, K., Harada, M. and Berberich, T. (1998) Molecular cloning and partial characterization of a tobacco cDNA encoding a small bZIP protein. Biochim. Biophys. Acta. 1395, 171-175 https://doi.org/10.1016/S0167-4781(97)00161-9
- Martinez-Garcia, J. F., Moyano, E., Alcocer, M. J. and Martin, C. (1998) Two bZIP proteins from Antirrhinum flowers preferentially bind a hybrid C-box/G-box motif and help to define a new subfamily of bZIP transcription factors. Plant J. 13, 489-505 https://doi.org/10.1046/j.1365-313X.1998.00050.x
- Zou, M., Guan, Y., Ren, H., Zhang, F. and Chen, F. (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol. Biol. 66, 675-683 https://doi.org/10.1007/s11103-008-9298-4
- Singh K., Dennis, E. S., Ellis, J. G., Llewellyn, D. J. Tokuhisa., J. G., Wahleithner, J. A. and Peacock, W. J. (1990) OCSBF-1, a maize ocs enhancer binding factor: isolation and expression during development. Plant Cell 2, 891-903 https://doi.org/10.1105/tpc.2.9.891
- Rook, F., Weisbeek, P. and Smeekens, S. (1998) The lightregulated Arabidopsis bZIP transcription factor gene ATB2 encodes a protein with an unusually long leucine zipper domain. Plant. Mol. Biol. 37, 171-178 https://doi.org/10.1023/A:1005964327725
- Aguan, K., Sugawara, K., Suzuki, N. and Kusano, T. (1993) Low temperature-dependent expression of a rice gene encoding a protein with a leucine-zipper motif. Mol. Gen. Genet. 240, 1-8
- Sreenivasulu, N., Sopory, S. K. and Kavi Kishor, P. B. (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388, 1-13 https://doi.org/10.1016/j.gene.2006.10.009
- Finkelstein, R. R., Gampala, S. S. and Rock, C. D. (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14, S15-S45 https://doi.org/10.1105/tpc.010441
- Lee, S. C., Choi, H. W., Hwang, I. S., Choi, D. S. and Hwang, B. K. (2006) Functional roles of the pepper pathogen- induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224, 1209-1225 https://doi.org/10.1007/s00425-006-0302-4
- Ukness, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A., Ward, E. and Ryals, J. (1992) Acquired resistance in Arabidopsis. Plant Cell 4, 645-656 https://doi.org/10.1105/tpc.4.6.645
- Rickauer, M., Brodschelm, W., Bottin, A., Veronesi, C., Grimal, H. and Esquerre-Tugaye, M. T. (1997) The jasmonate pathway is involved differentially in the regulation of diVerent defense responses in tobacco cells. Planta 202, 155-162 https://doi.org/10.1007/s004250050114
- Asada, K. (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
- Karpinski, S., Wingsle, G., Karpinska, B., Hallogren, J. E. (2001) Redox sensing of photooxidative stress and acclamatory mechanisms in plants; In Regulation of Photosynthesis, Aro, E. M. and Andersson, B. (eds.), pp 469-486, Kluwer, Dordrecht
- Murgia, I., Tarantino, D., Vannini, C., Bracale, M., Carravieri, S. and Soave, C. (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxideinduced cell death. Plant J. 38, 940-953 https://doi.org/10.1111/j.1365-313X.2004.02092.x
- Kranner, I., Beckett, R. P., Wornik, S., Zorn, M. and Pfeifhofer, H. W. (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J. 31, 13-24 https://doi.org/10.1046/j.1365-313X.2002.01329.x
- Claudia, N., Busk, P. K., Domínguez-Puigjaner, E., Lumbreras, V., Testillano, P. S., Risuen, M. C. and Pagès, M. (2005) Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28. Plant Mol. Biol. 58, 899-914 https://doi.org/10.1007/s11103-005-8407-x
- Pla, M., Vilardell, J., Guiltinan, M. J., Marcotte, W. R., Niogret, M. F., Quatrano, R. S. and Pagès, M. (1993) The cis-regulatory element CCACGTGG is involved in ABA and waterstress responses of the maize gene rab28. Plant Mol. Biol. 21, 259-266 https://doi.org/10.1007/BF00019942
- Busk, P. K., Pujal, J., Jessop, A., Lumbreras, V. and Pagès, M. (1999) Constitutive protein-DNA interactions on the abscisic acid-responsive element before and after developmental activation of the rab28 gene. Plant Mol. Biol. 41, 529-536 https://doi.org/10.1023/A:1006345113637
- Nakagawa, H., Ohmiya, K. and Hattori, T. (1996) A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Plant J. 9, 217-227 https://doi.org/10.1046/j.1365-313X.1996.09020217.x
- Choi, H., Hong, J., Ha, J., Kang, J. and Kim, S. Y. (2000) ABFs, a family of ABA responsive element binding factors. J. Biol. Chem. 275, 1723-1730 https://doi.org/10.1074/jbc.275.3.1723
- Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. U.S.A. 97, 11632-11637 https://doi.org/10.1073/pnas.190309197
- Lopez-Molina, L. Mongrand, S. and Chua, N. H. (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 98, 4782-4787 https://doi.org/10.1073/pnas.081594298
- Yamamoto-Katou, A., Katou, S., Yoshioka, H., Doke, N. and Kawakita, K. (2006) Nitrate reductase is responsible for elicitin-induced nitric oxide production in Nicotiana benthamiana. Plant Cell Physiol. 47, 726-735 https://doi.org/10.1093/pcp/pcj044
- Grun, S., Lindermayr, C., Sell, S. and Durner, J. (2006) Nitric oxide and gene regulation in plants. J. Exp. Botany 57, 507-516 https://doi.org/10.1093/jxb/erj053
- van Loon, L. C., Rep, M. and Pieterse, C. M. J. (2006) Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135-162 https://doi.org/10.1146/annurev.phyto.44.070505.143425
- Kato, H., Asai, S., Yamamoto-Katou, A., Yoshioka, H., Doke, N. and Kawakita, K. (2008) Involvement of NbNOA1 in NO production and defense responses in INF1-treated Nicotiana benthamiana. J. Gen. Plant Pathol. 74, 15-23 https://doi.org/10.1007/s10327-007-0054-4
- Yamamoto, A., Katou, S., Yoshioka, H., Doke, N. and Kawakita, K. (2004) Involvement of nitric oxide generation in hypersensitive cell death induced by elicitin in tobacco cell suspension culture. J. Gen. Plant Pathol. 70, 85-92 https://doi.org/10.1007/s10327-003-0094-3
- Chattopadhyay, S., Ang, L. H., Puente, P., Deng, X. W. and Wei, N. (1998). Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10, 673-683 https://doi.org/10.1105/tpc.10.5.673
- Jonassen, E. M., Lea, U. S. and Lillo, C. (2008) HY5 and HYH are positive regulators of nitrate reductase in seedlings and rosette stage plants. Planta 227, 559-564 https://doi.org/10.1007/s00425-007-0638-4
- Yi, S. Y., Kim, J. H., Joung, Y. H., Lee, S., Kim, W. T., Yu, S. H. and Choi, D. (2004) The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol. 136, 2862-2874 https://doi.org/10.1104/pp.104.042903
- Sambrook, J, Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Ed 2. Cold Spring Harbor Laboratory Press, Plainview, NY
- Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. and Mullineaux, P. M. (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819-832 https://doi.org/10.1023/A:1006496308160
Cited by
- Molecular characterization and stress signaling of the Miscanthus sinensis MsCOMT gene by transient assay vol.59, pp.5, 2012, https://doi.org/10.1134/S1021443712050135
- The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis vol.67, pp.11, 2016, https://doi.org/10.1093/jxb/erw181
- Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.) vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-1990-6
- Overexpression of the MhTGA2 gene from crab apple (Malus hupehensis) confers increased tolerance to salt stress in transgenic apple (Malus domestica) vol.152, pp.04, 2014, https://doi.org/10.1017/S0021859613000130
- Candidate gene expression profiling in two contrasting tomato cultivars under chilling stress vol.58, pp.2, 2014, https://doi.org/10.1007/s10535-014-0403-z
- A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene vol.14, pp.4, 2016, https://doi.org/10.1111/pbi.12480
- An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes vol.28, pp.10, 2009, https://doi.org/10.1007/s00299-009-0749-4
- Comparative Analysis of the Chrysanthemum Leaf Transcript Profiling in Response to Salt Stress vol.11, pp.7, 2016, https://doi.org/10.1371/journal.pone.0159721
- Morphological changes and increase of resistance to oxidative stress by overexpression of the LebZIP2 gene in Nicotiana benthamiana vol.63, pp.1, 2016, https://doi.org/10.1134/S1021443716010143
- Molecular characterization of a stress-response bZIP transcription factor in banana vol.113, pp.2, 2013, https://doi.org/10.1007/s11240-012-0258-y
- Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus vol.8, pp.10, 2017, https://doi.org/10.3390/genes8100288
- SlbZIP38, a Tomato bZIP Family Gene Downregulated by Abscisic Acid, Is a Negative Regulator of Drought and Salt Stress Tolerance vol.8, pp.12, 2017, https://doi.org/10.3390/genes8120402
- Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato vol.18, pp.1, 2018, https://doi.org/10.1186/s12870-018-1299-0