DOI QR코드

DOI QR Code

Variation of Fine Structure of Wood Cellulose within Stems of 3 Commercial Softwood Species Grown in Korea

국내산 주요 침엽수 3종간의 수간 내 목재셀룰로오스의 미세구조 변이

  • Eun, Dong-Jin (College of Forest and Environmental Sciences, Kangwon National University) ;
  • Kwon, Sung-Min (College of Forest and Environmental Sciences, Kangwon National University) ;
  • Kim, Nam-Hun (College of Forest and Environmental Sciences, Kangwon National University)
  • 은동진 (강원대학교 산림환경과학대학) ;
  • 권성민 (강원대학교 산림환경과학대학) ;
  • 김남훈 (강원대학교 산림환경과학대학)
  • Received : 2007.07.11
  • Accepted : 2007.09.17
  • Published : 2008.01.25

Abstract

Radial and vertical variations of relative crystallinity and crystallite width of cellulose within stems of three softwoods (Pinus densiflora S. et Z., P. koraiensis S. et Z, P. rigida Mill.) grown in Korea were examined by an X-ray diffraction method. The mean of relative crystallinity was 61.7% in P. koraiensis, 60.6% in P. densiflora and 49.4% in P. rigida. The degree of crystallinity in earlywood and latewood increased with the age from pith to about 10~15 years, and then remained almost constant value. The relative crystallinitiy of latewood was slightly higher than that of earlywood. The relative crystallinity in P. densiflora was a little lower at the base of stem, but no significant difference by height was shown in P. koraiensis and P. rigida. The crystallite widths in the stems were 2.8 to 3.0 nm, but were not significantly different in earlywood and latewood by height. In conclusion, the relative crystallinity appeared to be a useful index for separating juvenile wood from adult wood in the softwoods of P. densiflora, P. koraiensis, and P. rigida grown in Korea.

국내에서 성장한 주요 침엽수 3종(소나무, 잣나무, 리기다소나무)의 수간 내 셀룰로오스 상대결정화도와 결정폭에 대한 수평방향 및 수직방향 변이를 X선 회절법에 의해 조사하였다. 각 수종의 상대결정화도 평균값은 소나무 60.6%, 잣나무 61.7%, 리기다소나무 49.4%로 리기다소나무가 가장 낮게 나타났다. 공시 수종의 상대결정화도는 약 10~15연륜까지 증가하다가 그 후 거의 일정한 값을 보여 주었고 만재부의 상대결정화도가 조재부의 상대결정화도보다 다소 높게 나타나는 경향이 있었다. 소나무 상대결정화도는 수관부보다 기부에서 다소 낮게 나타났으나 잣나무, 리기다소나무는 수고에 따른 차이를 거의 나타내지 않았다. 각 수종의 셀룰로오스 결정폭은 3수종 모두 2.8~3 nm 정도로 거의 차이가 없었고 수평방향 및 수직방향, 조만재 간에도 차이가 없었다. 따라서 상대결정화도와 결정폭 중 상대결정화도는 국내산 주요 침엽수재의 미성숙재와 성숙재를 구분하는 재질 지표의 하나로 이용이 가능할 것으로 생각되었다.

Keywords

Acknowledgement

Supported by : 강원대학교

References

  1. Alteyrac, J., A. Cloutier, and S. Y. Zhang. 2006. Characterization of juvenile wood to transition age in black spruce (Picea mariana (Mill.) B.S.P) at different stand densities and sampling heights. Wood Science and Technology. 40: 124-138. https://doi.org/10.1007/s00226-005-0047-4
  2. Andersson, S., R. Serimaa, T. Paakkari, P. Saranpaa, and E. Pesonen. 2003. Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). Journal of Wood Science. 49: 531-537.
  3. Banna, M. W. 1965. The length, tangential diameter and length/width ratio conifer tracheids. Can. Bot. 43: 967-984. https://doi.org/10.1139/b65-109
  4. Bao, F. C., Z. H. Jiang, X. M. Jiang, X. X. Lu, X. Q. Luo, and S. Y. Zhang. 2001. Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Science and Technology. 35: 363-375. https://doi.org/10.1007/s002260100099
  5. Fang, S., W. Yang, and Y. Tian. 2006. Clonal and within-tree variation in microfibril angle in poplar clones. New Forests. 31: 373-383. https://doi.org/10.1007/s11056-005-8679-7
  6. Fengel, D. and G. Wegner. 1984. Wood: Chemistry, ultrastructure, reactions. Walter de Gruyter. pp. 90-93.
  7. Fujiwara, S. and K. C. Yang. 2000. The relationship between cell length and ring width and circumferential growth rate in five canadian species. IAWA Journal. 21(3): 335-345. https://doi.org/10.1163/22941932-90000251
  8. George, T. 1991. Science and technology of wood: structure, properties, utilization. Van Nostrand Reinhold. pp. 66-74.
  9. Harada, H. and T. Goto. 1982. The structure of cellulose microfibrils in valonia. Cellulose and other natural polymer system: Boigenesis, structure, and degradation. 19: 383-400.
  10. Jahan, M. S. and S. P. Mun. 2005. Effect of tree age on the cellulose structure of Nalita wood (Trema orientalis). Wood Science and Technology. 39: 637-373.
  11. Larson, P. R. 1962a. A biological approach to wood quality. Tappi. 45: 443-448.
  12. Larson, P. R. 1962b. Stem from development of forest trees. Forest Science Monograph No. 5.
  13. Lee, C. L. 1961. Crystallinity of wood cellulose fibers studies by X-ray method. Forest Product Journal. 11(2): 108-112.
  14. Lewin, M. and I. Goldstein. 1991. Wood structure and composition. Marcel Dekker, Inc. pp. 151-154.
  15. Lichtenegger, H., A. Reiterer, S. E. Stanzel-Tschegg, and P. Fratzl. 1999. Variation of cellulose microfibril angles in softwood and hardwoods: A possible strategy of mechanical optimization. Journal of Structural Biology. 128: 257-269. https://doi.org/10.1006/jsbi.1999.4194
  16. Newman, R. H. and J. A. Hemmingson. 1990. Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung. 44: 351-355. https://doi.org/10.1515/hfsg.1990.44.5.351
  17. Panshin, A. J. and C. de Zeeuw. 1980. Textbook of wood technology. McGraw-Hill Book Company. pp. 237-275.
  18. Parresol, R., R. Bernard, and C. Fuliang. 1998. An investigation of crystalline intensity of wood of poplar clones grown in Jiangsu Province, China. Res. Pap. SRS-11, Asheville, NC : U.S Department of Agriculture, Forest Service, Southern Research Station. p. 7.
  19. Preston, R. D. 1974. The physical biology of plant cell walls. London Chapman and Hall. 5: 144-146.
  20. Scherrer, P. 1918. Gottinger Nacher. 2: 98.
  21. Segal, L., J. J. Greely, A. E. Martin Jr., and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal. 29: 786-994. https://doi.org/10.1177/004051755902901003
  22. Tanaka, F., T. Koshijima, and K. Okamura. 1981. Characterization of cellulose in compression and opposite woods of a Pinus densiflora tree grown under the influence of strong wind. Wood Science Technology 15: 265-273. https://doi.org/10.1007/BF00350944
  23. Washusen, R., R. Evans, and S. Southerton. 2005. A study of Eucalyptus grandis and Eucalyptus globulus branch wood microstructure. IAWA Journal. 26(2): 203-210. https://doi.org/10.1163/22941932-90000112
  24. Wang, S. Y. and C. M. Chiu. 1990. The wood properties of Japanese cedar originated by seed and vegetative reproduction in Taiwan IV. - The variation of the degree of crystallinity of cellulose. Mokuzai Gakkaishi. 36(11): 909-916.
  25. Wellwood, R. W., C. B. R. Sastry, M. M. Micko, and L. Paszner. 1974. On some possible specific gravity, holo and ${\alpha}$-cellulose, tracheid weight/length and cellulose crystallinity relationship in a 500-year-old Douglas-fir tree. Bd. 28 H. 3: 91-94.
  26. Zhu, J., T. Nakano, and Y. Hirakawa. 1998. Effect of growth on wood properties for Japanses larch (Larix kaempferi): Difference of annual ring structure between corewood and outerwood. Journal Wood Science. 44: 392-396. https://doi.org/10.1007/BF01130453
  27. Zhu, J., T. Nakano, and Y. Hirakawa. 2000. Effect of radial growth rate on selected indices for juvenile and mature wood of the Japanese larch. Journal of Wood Science. 46: 417-422. https://doi.org/10.1007/BF00765798
  28. 祖父江信夫, 平井信之, 淺野猪久夫. 1970. X線による木 材構造の硏究 - スギの樹幹內に よる結晶狀態の變化 について. 木材學會誌. 16(6): 262-267.
  29. 김남훈, 이기영. 1998. 편백(Chamaecyparis obtusa E.) 수간내에서의 결정상태의 변이성. 목재공학. 26(4): 20-28.
  30. 박병수, 박정환, 정성호, 한소라. 2007. 낙엽송의 가도관 변이. 2007 학술발표요지집. 한국목재공학회. pp. 257-258.
  31. 이소미, 김병로. 2005. 일본잎갈나무 수간내 재질변동 에 관한 연구(II): 가도관 길이와 폭, 마이크로피브릴 경각, 강도의 납북방향 변동. 목재공학. 33(1): 21-28.
  32. 이원용, 김남훈. 1992. X선회절법에 의한 주요 침.활 엽수재의 미세구조 해석. 목재공학. 20(1): 28-37.

Cited by

  1. Study on the Variations of Inter-annual Tracheid Length for Korean Red Pine from Sokwang-ri in Uljin vol.42, pp.6, 2014, https://doi.org/10.5658/WOOD.2014.42.6.646