상업용 12인치 급속가열장치의 제어계 설계를 위한 모델인식

Model Identification for Control System Design of a Commercial 12-inch Rapid Thermal Processor

  • Yun, Woohyun (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Ji, Sang Hyun (KORNIC Systems Co., Ltd.) ;
  • Na, Byung-Cheol (KORNIC Systems Co., Ltd.) ;
  • Won, Wangyun (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Kwang Soon (Department of Chemical and Biomolecular Engineering, Sogang University)
  • 투고 : 2007.12.15
  • 심사 : 2008.01.24
  • 발행 : 2008.06.30

초록

상업용 12인치 급속가열장치(RTP)의 다변수 고급제어기를 개발하기 위하여 열전대가 부착된 웨이퍼를 대상으로 다변수 모델인식을 수행하였다. 웨이퍼에는 7개의 열전대가 설치되어 있으며 10개의 텅스텐-할로겐 램프 그룹으로 가열을 할 수 있다. 모델인식 실험과정에서 웨이퍼의 휨을 최소화하며 최종적으로 10-입력 7-출력의 균형 잡힌 상태공간 모델을 얻기 위한 모델인식방법을 제안하였다. 또한 넓은 온도영역에서 복사에 의한 비선형성을 가장 효과적으로 상쇄시킬 수 있는 출력변수 정의방법을 제안하였다. 600, 700, $800^{\circ}C$ 부근의 정상상태에서 실험을 수행하여 모델을 추정한 결과 상태의 차수는 80~100, 모델출력은 $y=T(K)^2$으로 결정하는 것이 바람직하며, 이때 one-step-ahead 온도예측 오차의 제곱평균은 0.125~0.135 K 정도로 나타났다.

This paper describes a model identification method that has been applied to a commercial 12-inch RTP (rapid thermal processing) equipment with an ultimate aim to develop a high-performance advanced controller. Seven thermocouples are attached on the wafer surface and twelve tungsten-halogen lamp groups are used to heat up the wafer. To obtain a MIMO balanced state space model, multiple SIMO (single-input multiple-output) identification with highorder ARX models have been conducted and the resulting models have been combined, transformed and reduced to a MIMO balanced state space model through a balanced truncation technique. The identification experiments were designed to minimize the wafer warpage and an output linearization block has been proposed for compensation of the nonlinearity from the radiation-dominant heat transfer. As a result from the identification at around 600, 700, and $800^{\circ}C$, respectively, it was found that $y=T(K)^2$ and the state dimension of 80-100 are most desirable. With this choice the root-mean-square value of the one-step-ahead temperature prediction error was found to be in the range of 0.125-0.135 K.

키워드

참고문헌

  1. May, G. S. and Sze, S. M., Fundamentals of Semiconductor Fabrication, John Wiley, & Sons, NJ(2004)
  2. Xiao, H., Introduction to Semiconductor manufacturing Technology, Prentice-Hall(2001)
  3. Private communication with engineers in Kornic Systems Co
  4. Cho, Y. M. and Gyugyi, P., "Control of Rapid Thermal Processing: A System Theoretic Approach, " IEEE Trans. Contr. Sys. Tech., 5, 644(1997) https://doi.org/10.1109/87.641407
  5. Schaper, C. D., Moslehi, M. M., Sarawat, K. C. and Kailath, T., Modeling, "Identification, and Control of Rapid Thermal Processing Systems," J. Electrochem. Soc., 141, 3200(1994) https://doi.org/10.1149/1.2059302
  6. Balakrishnan, K. S. and Edgar, T. F., "Model-based Control in Rapid Thermal Processing," Thin Solid Films, 365, 322-333 (2000) https://doi.org/10.1016/S0040-6090(99)01049-4
  7. Cho, W., Edgar, T. F. and Lee, J., "Nonlinear Model Identification for Temperature Control in a Single Wafer Rapid Thermal Processing," submitted to I&ECR(2007)
  8. Cho, M., Lee, Y., Joo, S. and Lee, K. S., "Semi-empirical Modelbased Multivariable Iterative Learning Control of an RTP System," IEEE Trans. Semiconductor Manufacturing, 18, 430(2005) https://doi.org/10.1109/TSM.2005.852111
  9. Lee, K. S., Lee, J., Chin, I., Choi, J. and Lee, J. H., "Control of Wafer Temperature Uniformity in Rapid Thermal Processing Using an Optimal Iterative Learning Control Technique, " Ind. Eng. Chem. Res., 40, 1661(2001) https://doi.org/10.1021/ie0005553
  10. Zhu, K., Robust and optimal control, Prentice-Hall, NJ(1996)
  11. Won, W., Yoon, J., Lee, K. S. and Lee, B., "Identification of MIMO State Space Model Based on MISO High-order ARX Model: Design and Application, " Korean Chem. Eng. Res., 45(1), 67-72 (2007)