유전자지문분석법(T-RFLP)을 이용한 하천 미생물의 다양성 평가

Evaluation of Riverine Microbial Diversity using the Culture-Independent Genetic Fingerprinting Technique (T-RFLP)

  • 정주용 (경기도보건환경연구원 수질연구부) ;
  • 이경희 (경기도보건환경연구원 수질연구부)
  • Jeong, Ju-Yong (Department of Water Quality Research, Gyeonggido Institute of Health and Environment) ;
  • Lee, Kyong-Hee (Department of Water Quality Research, Gyeonggido Institute of Health and Environment)
  • 투고 : 2008.01.07
  • 심사 : 2008.02.26
  • 발행 : 2008.03.30

초록

To analyze the riverine microbial community structure, genetic fingerprints and ecological indexes such as species abundances, diversity, evenness, dominance of targeted rivers in Gyeonggi Province were acquired and evaluated using terminal restriction fragment length polymorphism (T-RFLP) technique. Genetic fingerprinting technique such as T-RFLP, which is able to show the microbial community clearly unlike traditional culture-dependent techniques, was thought to be useful to analyse the riverine microbial ecosystem under various factors. Riverine ecosystem evaluation using visible organisms would give biased results with time, targeted organism and researcher. But, T-RFLP, which can exclude the subjected biases such as culture condition and identification, would be an option to understand natural ecosystem by including the microorganisms that defy culture but perform important functions.

키워드

참고문헌

  1. 권계경, 정성영, 이정현, 김상진, 현정호(2004). 다환방향족 탄화수소가 광양만 퇴적토의 미생물 군집구조에 미치는 영향. 환경생물학회지, 22, pp. 38-46
  2. Bent, S. J., Pierson, J. D., Forney, L. J., Danovaro, R., Luna, G. M., Dell'Anno, A. and Pietrangeli, B. (2007). Measuring species richness based on microbial community fingerprints: the emperor has no clothes. Appl. Envir. Microbiol., 73(7), pp. 2399-2401 https://doi.org/10.1128/AEM.02383-06
  3. Blackwood, C. B., Marsh, T., Kim, S. H. and Paul, E. A. (2003). Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl. Envir. Microbiol., 69(2), pp. 926-932 https://doi.org/10.1128/AEM.69.2.926-932.2003
  4. Brummer, I. H., Fehr, W. and Wagner-Dobler, I. (2000). Biofilm community structure in polluted rivers: abundance of dominant phylogenetic groups over a complete annual cycle. Appl. Envir. Microbiol., 66(7), pp. 3078-3082 https://doi.org/10.1128/AEM.66.7.3078-3082.2000
  5. Cho, J. C. and Kim, S. J. (2000). Increase in bacterial community diversity in subsurface aquifers receiving livestock wastewater input. Appl. Envir. Microbiol., 66(7), pp. 956-965 https://doi.org/10.1128/AEM.66.3.956-965.2000
  6. Crump, B. C., Armbrust, E. V. and Baross, J. A. (1999). Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Appl. Envir. Microbiol., 65(7), pp. 3192-3204
  7. Dunbar, J., Ticknor, L. O. and Kuske, C. R. (2001). Phylogenetic Specificity and Reproducibility and New Method for Analysis of Terminal Restriction Fragment Profiles of 16S rRNA Genes from Bacterial Communities. Appl. Envir. Microbiol., 67(1), pp. 190-197 https://doi.org/10.1128/AEM.67.1.190-197.2001
  8. Eichner, C. A., Erb, R. W., Timmis, K. N. and Wagner-Dobler, I. (1999). Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol., 65(1), pp. 102-109
  9. Gonzales-Toris, E., Llobet-Brossa, E., Casamayor, E. O., Amann, R. and Amils, R. (2003). Microbial ecology of an extreme acidic environment, the Tinto river. Appl. Envir. Microbiol., 69(8), pp. 4853-4865 https://doi.org/10.1128/AEM.69.8.4853-4865.2003
  10. Head, J. M., Saunders, J. R. and Pickup, R. W. (1998). Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial ecology, 35(1), pp. 1-21 https://doi.org/10.1007/s002489900056
  11. Hewson, I. and Fuhrman, J. A. (2004). Richness and diversity of a bacterioplankton species along an estuarine gradient in Moreton bay, Australia. Appl. Envir. Microbiol., 70(6), pp. 3425-3433 https://doi.org/10.1128/AEM.70.6.3425-3433.2004
  12. Hugenholtz, P., Goebel, B. M. and Pace, N. R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. of bacteriol., 180(18), pp. 4764-4774
  13. Mehta, M. P., Butterfield, D. A. and Baross, J. A. (2003). Phylogenetic diversity of nitrogenase (nifH) genes in deep-Sea and hydrothermal vent environments of the Juan de Fuca ridge. Appl. Envir. Microbiol., 69(2), pp. 690-670
  14. Moeseneder, M. M., Arrieta, J. M., Muyzer, G. and Herndl, G. J. (1999). Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterio-plankton communities and comparison with denaturing gradient gel electrophoresis. Appl. Envir. Microbiol., 65(8), pp. 3518-3525
  15. Murray, A. E., Preston, C. M., Massana, R., Taylor, L. T., Blaski, A., Wu, K. and DeLong, E. F. (1998). Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers island, Antarctica. Appl. Envir. Microbiol., 64(7), pp. 2585-2595
  16. Page, K. A., Connon, S. A. and Giovannoni, S. J. (2004). Representative freshwater bacterioplankton isolated from Crater Lake, Oregon. Appl. Envir. Microbiol., 70(11), pp. 6542-6550 https://doi.org/10.1128/AEM.70.11.6542-6550.2004
  17. Somerville, C. C., Knight, I. T., Straube, W. L. and Colwell, R. R. (1989). Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl. Envir. Microbiol., 55(3), pp. 548-554