Genetic Variability and Population Structure of Olive Flounder Paralichthys olivaceus from Stocked Areas Using Microsatellite DNA Markers

종묘방류에 따른 넙치, Paralichthys olivaceus 지역집단의 유전학적 구조

  • 정달상 (국립수산과학원 방류종묘기술센터) ;
  • 전창영 (국립수산과학원 방류종묘기술센터)
  • Received : 2008.07.25
  • Accepted : 2008.09.18
  • Published : 2008.09.30

Abstract

Five microsatellite DNA markers were used to investigate genetic diversity and population structure of olive flounder Paralichthys olivaceus collected from four locations (YD, SC, GJ, WD) where hatchery-based seeds of the flounder have been released. The average of observed (Ho) and expected heterozygosity (He) ranged from 0.833 to 0.871, and from 0.842 to 0.876, respectively. The average number of alleles per locus ranged from 12.4 to 17.8. The proportion of stocked flounder ranged from 20.0% to 95.8% for wild-caught populations with a decreasing tendency of alleles per locus following a higher proportion of stocked flounder. There is need to implement a more careful stock-enhancement program of hatchery-based seeds and to monitor its genetic effects on wild populations to ensure conservation of natural flounder resources.

넙치의 자원조성을 위해 인위적으로 생산된 넙치종묘를 방류함에 따라 이들 방류에 의해 그 지역에 서식하고 있는 자연집단에 미치는 영향을 파악하기 위하여 4개 지역 (YD, SC, GJ, WD)에서 어획된 넙치집단의 유전학적 구조와 다양성을 5개의 microsatellite DNA marker를 이용하여 조사하였다. 조사된 지역에서 방류넙치의 혼획율은 20.0~95.8%였다. 넙치집단의 평균 이형접합체(Ho)의 범위는 0.833~0.876이었으며, 지역집단별 평균대립유전자수는 YD 집단 15.0개, SC 집단 17.8개, GJ 집단 14.6개, WD 집단 12.4개였으며, 방류어의 혼획율이 20.0%이었던 SC 집단에서 높게 나타났고 방류어의 혼획율이 95.8%이었던 WD 집단에서 낮게 나타나 방류어의 혼획율이 높을수록 지역집단의 대립유전자의 수가 낮은 경향을 보였다. 집단간 유전학적 거리의 범위는 0.026~0.232로서 WD 집단과 GJ 집단간에서 가장 낮았고, SC-R 집단과 YD-W 집단간에서 가장 멀게 나타났다.

Keywords

Acknowledgement

Grant : 방류용 건강종묘생산 연구

Supported by : 국립수산과학원

References

  1. Booke, H.E. 1999. The stock concept revisited: perspectives on its history in fisheries. Fish. Res., 43: 9-11 https://doi.org/10.1016/S0165-7836(99)00063-6
  2. Evans, B., J. Bartlett, N. Sweijd, P. cook and N.G. Elliott. 2004. Loss of genetic variation at microsatellite loci in hatchery produced abalone in Australia (Haliotis rubra) and South Africa (Haliotis midae). Aquaculture, 233: 109-127 https://doi.org/10.1016/j.aquaculture.2003.09.037
  3. FAO. 1993. Report of the expert consultation on utilization and conservation of aquatic genetic resources. FAO Fish. Tech. Rep., 491: 1-58
  4. Hara, M. and M. Sekino. 2003. Efficient detection of parentage in a cultured Japanese flounder Paralichthy olivaceus using microsatellite DNA marker. Aquaculture, 217: 107-114 https://doi.org/10.1016/S0044-8486(02)00069-8
  5. Jeong, D.S., E.B. Gonzalez, K. Morishima, K. Arai and T. Umino. 2007. Parentage assignment of stocked black sea bream, Acanthopagrus schlegeli in Hiroshima Bay using microsatellite DNA markers. Fish. Sci., 73: 823-830 https://doi.org/10.1111/j.1444-2906.2007.01402.x
  6. Jeong, D.S., K.S. Kim and K.K. Kim. 2006. Evaluation of effective breeders number (Ne) for stock enhancement in olive flounder Paralichthys olivaceus using microsatellite DNA markers. J. of Aquaculture, 19: 205-209
  7. Kim, W.J., K.K. Kim, J.H. Lee, D.W. Park, J.Y. Park and J.Y. Lee. 2003. Isolation and characterization of polymorphic microsatellite loci in the olive flounder (Paralichthys olivaceus). Molecular Ecology Notes, 3: 491-493 https://doi.org/10.1046/j.1471-8286.2003.00524.x
  8. Li, Q., C. Park, T. Endo and A. Kijima. 2004. Loss of genetic variation at microsatellite loci in hatchery strains of the Pacific abalone (Haliotis discus hannai). Aquaculture, 235: 207-222 https://doi.org/10.1016/j.aquaculture.2003.12.018
  9. Liu Y., S. Chen and B. Li. 2005. Assessing the genetic structure of three Japanese flounder (Paralichthys olivaceus) stocks by microsatellite markers. Aquaculture, 243: 103-111 https://doi.org/10.1016/j.aquaculture.2004.10.024
  10. MOMAF. 2007. Annual report of fisheries in Korea. MOMAF, 77-78
  11. Norris, A.T., D.G. Bradley and E.P. Cunningham. 2000. Parentage and relatedness determination in farmed Atlantic salmon (Salmo salar) using microsatellite markers. Aquaculture, 182: 73-83 https://doi.org/10.1016/S0044-8486(99)00247-1
  12. Perez-Enriquez, R., M. Takagi and N. Taniguchi. 1999. Genetic change and pedigrees tracing of a hatchery-reared stock of red sea bream (Pagrus major) used for stock enhancement, based on microsatellite NDA markers. Aquaculture, 173: 413-423 https://doi.org/10.1016/S0044-8486(98)00469-4
  13. Sekino, M., K. Saitoh, T. Yamada, A. Kumagai, M. Hara and Y. Yamashita. 2003. Microsatellite-based pedigree tracing in a Japanese flounder Paralichthy olivaceus hatchery strain: implications for hatchery management related to stock enhancement program. Aquaculture, 221: 255-263 https://doi.org/10.1016/S0044-8486(02)00667-1
  14. Sekino, M., K. Saitoh, T. Yamada, M. Hara and Y. Yamashita. 2005. Genetic tagging of released Japanese flounder (Paralichthy olivaceus) based on polymorphic DNA markers. Aquaculture, 244: 49-61 https://doi.org/10.1016/j.aquaculture.2004.11.006
  15. Sekino, M., M. Hara and N. Taniguchi. 2002. Loss of microsatellite and mitochondrial DNA variation in hatchery strains of Japanese flounder Paralichthy olivaceus. Aquaculture, 213: 101-122 https://doi.org/10.1016/S0044-8486(01)00885-7
  16. Tamura, K. and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10: 512-526
  17. Tessier, N., L. Bernatchez and J.M. Wright. 1997. Population structure and impact of supportive breeding inferred from mito chondrial and microsatellite DNA analyses in land-locked Atlantic salmon Salmo salar L. Mol. Ecol., 6: 735-750 https://doi.org/10.1046/j.1365-294X.1997.00244.x
  18. Yoshida, K., M. Takagi, M. Tanaka and N. Taniguchil. 2000. Genetic variability and divergence of wild and artificially raised Japanese flounder Paralichthys olivaceus inferred from microsatellite DNA analysis. Fish Gen. Breeed. Sci., 29: 93-102