DOI QR코드

DOI QR Code

Diets with Different Forage/Concentrate Ratios for the Mediterranean Italian Buffalo: In vivo and In vitro Digestibility

  • Fabio, Zicarelli (University of Napoli Federico II, Department of Scienze Zootecniche e Ispezione degli alimenti via F. Delpino) ;
  • Calabro, Serena (University of Napoli Federico II, Department of Scienze Zootecniche e Ispezione degli alimenti via F. Delpino) ;
  • Piccolo, Vincenzo (University of Napoli Federico II, Department of Scienze Zootecniche e Ispezione degli alimenti via F. Delpino) ;
  • D'Urso, Simona (University of Napoli Federico II, Department of Scienze Zootecniche e Ispezione degli alimenti via F. Delpino) ;
  • Tudisco, Raffaella (University of Napoli Federico II, Department of Scienze Zootecniche e Ispezione degli alimenti via F. Delpino) ;
  • Bovera, Fulvia (University of Napoli Federico II, Department of Scienze Zootecniche e Ispezione degli alimenti via F. Delpino) ;
  • Cutrignelli, Monica I. (University of Napoli Federico II, Department of Scienze Zootecniche e Ispezione degli alimenti via F. Delpino) ;
  • Infascelli, Federico (University of Napoli Federico II, Department of Scienze Zootecniche e Ispezione degli alimenti via F. Delpino)
  • Received : 2006.11.16
  • Accepted : 2007.04.08
  • Published : 2008.01.01

Abstract

In vivo and in vitro digestibility of 6 diets with a forage to concentrate ratio (F/C) ranging from 100 to 50:50 (diet 1: all hay, diet 2: 90:10, diet 3: 80:20, diet 4: 70:30, diet 5: 60:40, diet 6: 50:50) were investigated using 6 buffaloes in a $6{\times}6$ Latin square design. For the in vivo trial, the individual faeces of buffaloes were collected 3 times per day for 7 days. Individual pooled faeces and samples of each diet were analysed for chemical composition and insoluble acid ash (AIA) contents in order to estimate the coefficient of apparent digestibility (ADC). On the last day of the in vivo trial a sample of faeces was collected from each animal and used as inoculum for the in vitro test, using the gas production technique (IVGPT). The in vivo organic matter digestibility (ADC) rose as the percentage of concentrate increased up to the 70:30 (F/C) diet (67.01, 73.03, 78.06 and 79.05, respectively for diets 1, 2, 3 and 4); the other two diets (60:40 and 50:50 F/C) unexpectedly did not follow this trend (75.11 and 79.06, respectively for diet 5 and 6). However, these data agree with the results of the in vitro trial. The ADC was positively correlated with the dOM (p<0.001), but not with the gas production at different times; cumulative gas production recorded at the end of incubation (OMCV) showed an irregular trend and was not closely correlated to degraded OM. Estimation of in vivo digestibility from in vitro fermentation data was acceptable, despite leaving room for improvement.

Keywords

References

  1. AOAC. 2000. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Arlington, VA, USA.
  2. Aufrere, J. 1982. Etude da la prevision de la digestibilite des fourrages par une méthode enzymatique. Ann. Zootech., 31(2): 111-130. https://doi.org/10.1051/animres:19820202
  3. Blummel, M. and E. R. Orskov. 1993. Comparison of in vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Anim. Feed Sci. and Techn. 40:109-119. https://doi.org/10.1016/0377-8401(93)90150-I
  4. Bovera, F., S. D'Urso, C. Di Meo, G. Piccolo, S. Calabro and A. Nizza. 2006. Comparison of rabbit caecal content and rabbit hard faeces as source of inoculum for the in vitro gas production technique. Asian-Aust. J. Anim. Sci. 19(11):1649- 1657. https://doi.org/10.5713/ajas.2006.1649
  5. Calabro, S., A. Di Francia, M. I. Cutrignelli, F. Masucci and V. Piccolo. 1997. In vitro gas production as predictor of the apparent digestibility in vivo of feedstuffs. Proc. V World Buffalo Congr., Caserta (Italy) 291-295.
  6. Calabro, S. 1999. Stima delle caratteristiche fermentative di alimenti per ruminanti mediante la tecnica di produzione cumulativa di gas. PhD Thesis in "Scienza dell'allevamento animale", Universita di Napoli "Federico II", Italy.
  7. Calabro, S., F. Infascelli, F. Bovera, G. Moniello and V. Piccolo. 2001. In vitro degradability of three forages: fermentation kinetics and gas production of NDF and neutral detergent soluble fraction of forages. J. Sci. Food Agric. 82:222-229. https://doi.org/10.1002/jsfa.1021
  8. Calabro, S., B. A. Williams, V. Piccolo, F. Infascelli and S. Tamminga. 2004. A comparison between buffalo and cow rumen fluids in terms of the in vitro fermentation characteristics of three fibrous feedstuffs. J. Sci. Food Agric. 84:645-652. https://doi.org/10.1002/jsfa.1723
  9. Calabro, S., F. Carone, M. I. Cutrignelli, S. D'Urso, G. Piccolo, R. Tudisco, G. Angelino and F. Infascelli. 2006. The effect of haymaking on the neutral detergent soluble fraction of two intercropped forages cut at different growth stages. Ital. J. Anim. Sci. 327-339.
  10. Cone, J. W., A. H. van Gelder, G. J. W. Visscher and L. Oudshoorn. 1996. Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus. Anim. Feed Sci. Tech. 16:113-128.
  11. Doane, P. H., P. Schofield and A. N. Pell. 1997a. NDF disappearance, gas and VFA production during the in vitro fermentation of six forages. J. Anim. Sci. 74:3342-3352.
  12. Doane, P. H., A. N. Pell and P. Schofield. 1997b. The effect of preservation method on the neutral detergent soluble fraction of forages. J. Anim. Sci. 75:1140-1148. https://doi.org/10.2527/1997.7541140x
  13. Goering, H. K. and P. J. Van Soest. 1970. Forage fibre analyses (apparatus, reagents, procedures and some applications). Agriculture Handbook No. 379, Washington, DC, USA.
  14. Goncalves, L. M. B. O. and A. E. S. Borba. 1996. Study of gas producing capacity of three sources of inocula. J. Agric. Sci. Cambridge, 127:511-515. https://doi.org/10.1017/S0021859600078734
  15. Grant, R. J. and D. R. Mertens. 1991. Effect of pH and starch on kinetics of in vitro fiber digestion. In: Abstracts International Symposium Forage Cell Wall Structure and Digestibility, Madison, WI. 7-10 October 1991. US Dairy Forage Research Centre, Madison WI. B17pp.
  16. Groot, J. C. J., J. W. Cone, B. A. Williams and F. M. A. Debersaques. 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feedstuffs. Anim. Feed Sci. Techn. 64:77-89. https://doi.org/10.1016/S0377-8401(96)01012-7
  17. Hoover, W. H. 1986. Chemical factors involved in ruminal fibre digestion. J. Dairy Sci. 69:2755-2766. https://doi.org/10.3168/jds.S0022-0302(86)80724-X
  18. Huhtanen, P. and S. Jaakkola. 1992. The effects of the forage preservation method and the proportion of concentrate on digestion of cell wall carbohydrates and rumen digesta pool size in cattle. Grass Forage Sci. 48:155-165.
  19. Huhtanen, P., S. Ahvenjarvi, M. R. Weisbjerg and P. Norgaard. 2006. Digestion and passage of fibre in ruminants. In: (Ed. K. Sejrsen, T. Hvelplund and M. O. Nielsen), Ruminant physiology. Digestion, metabolism and impact of nutrition on gene expression, immunology and stress. Proceedings Xth ISRP. Wageningen Academic Publishers. 87-135.
  20. Jones, R. J. and P. Barnes. 1996. In vitro digestibility assessment of tropical shrub legumes using rumen fluid or faecal fluid as an inoculum source. Tropical Grasslands. 30:374-377.
  21. Khazaal, K., M. T. Dentinho, J. M. Riberio and E. R. Orskov. 1995. A prediction of apparent digestibility and voluntary intake of hays fed to sheep: comparison between using fibre components, in vitro digestibility or characteristics of gas production or nylon bag degradation. J. Anim. Sci. 61:527-538. https://doi.org/10.1017/S1357729800014107
  22. Kopecny, J., B. Vencil, J. Kiselova and P. Brezina. 1989. Determination of rumen degradable protein with enzymes. Arch. Anim. Nutr. 39:635-645.
  23. Macheboeuf, D., M. Jestin, J. Andrieu and W. Martin-Rosset. 1997. Prediction of the organic matter digestibility of forages in horses by the gas test method. "In vitro technique for measuring nutrient supply to ruminants" BSAS Occ. Publ., No. 22, 252254.
  24. Manyuchi, B., E. Rusike and C. Chakoma. 1991. Comparison of the use of rumen fluid or dung as a source of microbial inoculum for the digestion of forages in vitro. Zimbabwe J. Agric. Res. 29:17-25.
  25. Mauricio, R. M., E. Owen, F. L. Mould, I. Givens, M. K. Theodorou, J. France, D. R. Davies and M. S. Dhanoa. 2001. Comparison of bovine rumen liquor and bovine faeces as inoculum for an in vitro gas production technique for evaluating forages. Anim. Feed Sci. Techn. 89:33-48. https://doi.org/10.1016/S0377-8401(00)00234-0
  26. McDonald, P., R. A. Edwards and J. F. D. Greenhalgh. 2002. Animal Nutrition. Longman Scientific & Technical, England, UK.
  27. Mehrez, Z. A. and R. E. Orskov. 1977. A study of the artificial fibre technique for determining the digestibility of feeds in the rumen. J. Agric. Sci. Cambridge 88:645-650. https://doi.org/10.1017/S0021859600037321
  28. Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz and W. Schneider. 1979. The estimation of the digestibility and metabolisable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. Camb. 93:217-222. https://doi.org/10.1017/S0021859600086305
  29. Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. and Devel. 28:7-12.
  30. Mould, F. L., E. R. Orskov and S. A. Gauld. 1983. Associative effects of mixed feeds. 2. The effect of dietary addition of bicarbonate salts on the voluntary intake and digestibility of diets containing various proportions of hay and barley. Anim. Feed Sci. Tech. 10:31-47. https://doi.org/10.1016/0377-8401(83)90004-4
  31. NONLIN Nonlinear Regression Analysis Program. 1995. P.H. Sherrod, MI, USA.
  32. Omed, H. M., A. Faza, R. F. E. Axford and D. I. Givens. 1998. A low tech in-vitro procedure using faecal liquor for the estimation of digestibility of forages. Proc. BSAS, 50.
  33. Pell, A. N. and P. Schofield. 1993. Computerized monitoring of gas production to measure forage digestion in vitro. J. Dairy Sci. 76:1063-1073. https://doi.org/10.3168/jds.S0022-0302(93)77435-4
  34. Rode, L. M., W. Z. Yang and K. A. Beauchemin. 1999. Fibrolytic enzyme supplements for dairy cows in early lactation. J. Dairy Sci. 82:21-2126. https://doi.org/10.3168/jds.S0022-0302(99)75455-X
  35. SAS. Statistical Analysis System. 2000. SAS User's Guide: Statistics ver. 8.1. SAS Institute Inc. Cary, NC.
  36. Schofield, P. and A. N. Pell. 1995. Measurement and kinetic analysis of the neutral detergent soluble carbohydrate fraction of legumes and grasses. J. Anim. Sci. 73:3455-3463. https://doi.org/10.2527/1995.73113455x
  37. Schofield, P., R. E. Pitt and A. N. Pell. 1994. Kinetics of fiber digestion from in vitro gas production. J. Anim. Sci. 72:2980- 2991. https://doi.org/10.2527/1994.72112980x
  38. Sniffen, C. J. and P. H. Robinson. 1987. Microbial growth and flow as influenced by dietary manipulations. J. Dairy Sci. 70:425-441. https://doi.org/10.3168/jds.S0022-0302(87)80027-9
  39. Theodorou, M. K. 1993. A new laboratory procedure for determining the fermentation kinetics of ruminant feeds. Ciencia e Invest. Agr. 20:332-334.
  40. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminants feeds. Anim. Feed Sci. Techn. 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  41. Tilley, J. M. and R. A. Terry. 1963. A two stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc. 18:104- 111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  42. Van Keulen, J. and B. A. Young. 1977. Evaluation of acid insoluble ash as a natural marker in mineral digestibilty studies. J. Anim. Sci. 44:282. https://doi.org/10.2527/jas1977.442282x
  43. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, and non starch polysaccarides in relation to animal nutrition. J. Anim. Sci. 74:3583-3597.
  44. Van Soest, P. J. 1996. Nutritional ecology of the ruminant. 2nd edition., Cornell University Press, Ithaca and London.
  45. Williams, B. A. 2000. Cumulative Gas-production Techniques for Forage Evaluation. Forage Evaluation in Ruminant Nutrition (Ed. D. I. Givens, E. Owen, R. F. E. Axford and H. M. Omed). CAB International.

Cited by

  1. On-farm feeding interventions to increase milk production in lactating dairy cows vol.49, pp.4, 2017, https://doi.org/10.1007/s11250-017-1268-x
  2. Utilization of Yeast Waste Fermented Citric Waste as a Protein Source to Replace Soybean Meal and Various Roughage to Concentrate Ratios on In Vitro Rumen Fermentation, Gas Kinetic, and Feed Digestion vol.7, pp.3, 2008, https://doi.org/10.3390/fermentation7030120
  3. Mitragyna speciosa Korth Leaves Supplementation on Feed Utilization, Rumen Fermentation Efficiency, Microbial Population, and Methane Production In Vitro vol.8, pp.1, 2008, https://doi.org/10.3390/fermentation8010008