References
- Campbell, J. A., Davies, G. J., Bulone, V. and Henrissat, B. (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326, 929-939 https://doi.org/10.1042/bj3260929u
- Yu, H., Chokhawala, H., Karpel, R., Yu, H., Wu, B., Zhang, J., Zhang, Y., Jia, Q. and Chen, X. (2005) A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 127, 17618-17619. https://doi.org/10.1021/ja0561690
- Cooke, F. J., Kodjo, A., Clutterbuck, E. J. and Bamford, K. B. (2004) A case of Pasteurella multocida peritoneal dialysis- associated peritonitis and review of the literature. Int. J. Infect. Dis. 8, 171-174. https://doi.org/10.1016/j.ijid.2003.10.004
- Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M. A., Samyn-Petit, B., Julien, S. and Delannoy, P. (2001) The human sialyltransferase family. Biochimie 83, 727-737. https://doi.org/10.1016/S0300-9084(01)01301-3
- Rudd, P. M., Elliott, T., Cresswell, P., Wilson, I. A. and Dwek, R. A. (2001) Glycosylation and the immune system. Science 291, 2370-2376. https://doi.org/10.1126/science.291.5512.2370
- Ni, L., Chokhawala, H. A., Cao, H., Henning, R., Ng, L., Huang, S., Yu, H., Chen, X. and Fisher, A. J. (2007) Crystal structures of Pasteurella multocida sialyltransferase complexes with acceptor and donor analogues reveal substrate binding sites and catalytic mechanism. Biochemistry 46, 6288-6298. https://doi.org/10.1021/bi700346w
- Ni, L., Sun, M., Yu, H., Chokhawala, H., Chen, X. and Fisher, A. J. (2006) Cytidine 5'-monophosphate (CMP)-induced structural changes in a multifunctional sialyltransferase from Pasteurella multocida. Biochemistry 45, 2139-2148. https://doi.org/10.1021/bi0524013
- Unligil, U. M. and Rini, J. M. (2000) Glycosyltransferase structure and mechanism. Curr. Opin. Struct. Biol. 10, 510-517. https://doi.org/10.1016/S0959-440X(00)00124-X
- Pedersen, L. C., Darden, T. A. and Negishi, M. (2002) Crystal structure of beta 1,3-glucuronyltransferase I in complex with active donor substrate UDP-GlcUA. J. Biol. Chem. 277, 21869-21873. https://doi.org/10.1074/jbc.M112343200
- Pedersen, L. C., Dong, J., Taniguchi, F., Kitagawa, H., Krahn, J. M., Pedersen, L. G., Sugahara, K. and Negishi, M. (2003) Crystal structure of an alpha 1,4-N-acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis. J. Biol. Chem. 278, 14420-14428. https://doi.org/10.1074/jbc.M210532200
- Crennell, S., Takimoto, T., Portner, A. and Taylor, G. (2000) Crystal structure of the multifunctional paramyxovirus hemagglutinin- neuraminidase. Nat. Struct. Biol. 7, 1068-1074. https://doi.org/10.1038/81002
- Burmeister, W. P., Henrissat, B., Bosso, C., Cusack, S. and Ruigrok, R. W. (1993) Influenza B virus neuraminidase can synthesize its own inhibitor. Structure 1, 19-6. https://doi.org/10.1016/0969-2126(93)90005-2
- Carugo, O. and Argos, P. (1997) NADP-dependent enzymes. I: conserved stereochemistry of cofactor binding. Proteins 28, 10-28. https://doi.org/10.1002/(SICI)1097-0134(199705)28:1<10::AID-PROT2>3.0.CO;2-N
- Kim, D. U., Yoo, J. H., Ryu, K. and Cho, H. S. (2006) Crystallization and preliminary X-ray crystallographic analysis of the alpha-2,6-sialyltransferase PM0188 from Pasteurella multosida. Acta crystallogr. F Struct. Biol. Cryst. Commun. 62, 142-144. https://doi.org/10.1107/S1744309106000844
- Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
- Jones, T. A., Zou, J. Y., Cowan, S. W. and Kjeldgaard, M. (1991) Improved methods for building protein models in electron density maps and the location of errors in the model. Acta Crystallogr. A 47, 110-119. https://doi.org/10.1107/S0108767390010224
- Brunger, A. T., Adams, P. D., Clore, G. M., De Lano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. and Warren, G. L. (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905-921. https://doi.org/10.1107/S0907444998003254
- Vaguine, A. A., Richelle, J. and Wodak, S. J. (1999) SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. D Biol. Crystallogr. 55, 191-205. https://doi.org/10.1107/S0907444998006684
- Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. and Pease, L. R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-59. https://doi.org/10.1016/0378-1119(89)90358-2
- Gosselin, S., Alhussaini, M., Streiff, M. B., Takabayashi, K. and Palcic, M. M. (1994) A continuous spectrophotometric assay for glycosyltransferases. Anal. Biochem. 220, 92-97. https://doi.org/10.1006/abio.1994.1303
Cited by
- Biochemical and Biophysical Characterization of the Sialyl-/Hexosyltransferase Synthesizing the Meningococcal Serogroup W135 Heteropolysaccharide Capsule vol.288, pp.17, 2013, https://doi.org/10.1074/jbc.M113.452276
- Current trends in the structure-activity relationships of sialyltransferases vol.21, pp.6, 2011, https://doi.org/10.1093/glycob/cwq189
- Protein engineering of α2,3/2,6-sialyltransferase to improve the yield and productivity of in vitro sialyllactose synthesis vol.24, pp.2, 2014, https://doi.org/10.1093/glycob/cwt092
- Converting Pasteurella multocida α2–3-sialyltransferase 1 (PmST1) to a regioselective α2–6-sialyltransferase by saturation mutagenesis and regioselective screening vol.15, pp.7, 2017, https://doi.org/10.1039/C6OB02702D
- Structural insights into sialic acid enzymology vol.12, pp.5, 2008, https://doi.org/10.1016/j.cbpa.2008.06.017
- Engineering of a Cytidine 5′-Monophosphate-Sialic Acid Synthetase for Improved Tolerance to Functional Sialic Acids vol.355, pp.18, 2013, https://doi.org/10.1002/adsc.201300568
- Crystal structure ofα/β-galactosideα2,3-sialyltransferase from a luminous marine bacterium,Photobacterium phosphoreum vol.583, pp.12, 2009, https://doi.org/10.1016/j.febslet.2009.05.032
- An α2,3-Sialyltransferase fromPhotobacteriumsp. JT-ISH-224 TransfersN-Acetylneuraminic Acid to Both the O-2 and O-3′ Hydroxyl Groups of Lactose vol.29, pp.2, 2010, https://doi.org/10.1080/07328300903586422
- Structure-function relationships of membrane-associated GT-B glycosyltransferases vol.24, pp.2, 2014, https://doi.org/10.1093/glycob/cwt101
- Mechanisms of the sialidase and trans-sialidase activities of bacterial sialyltransferases from glycosyltransferase family 80 vol.26, pp.4, 2016, https://doi.org/10.1093/glycob/cwv105
- Asp141 and the hydrogen-bond chain Asp141–Asn109–Asp33 are respectively essential for GT80 sialyltransferase activity and structural stability vol.80, pp.8, 2015, https://doi.org/10.1134/S0006297915080131
- Crystal structures of sialyltransferase fromPhotobacterium damselae vol.588, pp.24, 2014, https://doi.org/10.1016/j.febslet.2014.11.003
- Structure and Mechanism of the Lipooligosaccharide Sialyltransferase fromNeisseria meningitidis vol.286, pp.43, 2011, https://doi.org/10.1074/jbc.M111.249920
- Structural and mechanistic analysis of the membrane-embedded glycosyltransferase WaaA required for lipopolysaccharide synthesis vol.109, pp.16, 2012, https://doi.org/10.1073/pnas.1119894109
- Crossroads between Bacterial and Mammalian Glycosyltransferases vol.5, 2014, https://doi.org/10.3389/fimmu.2014.00492
- Neisseria meningitidis Serogroup B Polysialyltransferase: Insights into Substrate Binding vol.11, pp.2, 2010, https://doi.org/10.1002/cbic.200900659
- Computer-aided design of human sialyltransferase inhibitors of hST8Sia III vol.31, pp.2, 2018, https://doi.org/10.1002/jmr.2684