참고문헌
- Asanuma, N., M. Iwamoto and T. Hino. 1999a. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 82:780-787. https://doi.org/10.3168/jds.S0022-0302(99)75296-3
- Asanuma, N., M. Iwamoto and T. Hino. 1999b. The production of formate, a substrate for methanogenesis, from compounds related with the glyoxylate cycle by mixed ruminal microbes. Anim. Sci. J. 70:67-73.
- Asanuma, N. and T. Hino. 2000a. Effects of pH and energy supply on activity and amount of pyruvate formate-lyase in Streptococcus bovis. Appl. Environ. Microbiol. 66:3773-3777. https://doi.org/10.1128/AEM.66.9.3773-3777.2000
- Asanuma, N. and T. Hino. 2000b. Activity and properties of fumarate reductase in ruminal bacteria. J. Gen. Appl. Microbiol. 46:119-125. https://doi.org/10.2323/jgam.46.119
- Blaxter, K. L. and J. L. Clapperton. 1965. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 19:511-522. https://doi.org/10.1079/BJN19650046
- Busquet, M., S. Calsamiglia, A. Ferret, P. W. Cardozo and C. Kamel. 2005. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J. Dairy Sci. 88:2508-2516. https://doi.org/10.3168/jds.S0022-0302(05)72928-3
- Busquet, M., S. Calsamiglia, A. Ferret and C. Kamel. 2006. Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci. 89:761-771. https://doi.org/10.3168/jds.S0022-0302(06)72137-3
- Carro, M. D. and M. J. Ranilla. 2003a. Effect of the addition of malate on in vitro rumen fermentation of cereal grains. Br. J. Nutr. 89:181-188. https://doi.org/10.1079/BJN2002759
- Carro, M. D. and M. J. Ranilla. 2003b. Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by rumen microorganisms in vitro. Br. J. Nutr. 90:617-623. https://doi.org/10.1079/BJN2003935
- Chalupa, W. 1977. Manipulating rumen fermentation. J. Anim. Sci. 46:585-599.
- Counotte, G. H. M., R. A. Prins, R. H. A. M. Janssen and M. J. A. deBie. 1981. Role of Megasphaera elsdenii in the Fermentation of dl-[2-13C]lactate in the Rumen of Dairy Cattle. Appl. Environ. Microbiol. 42:649-655.
- Czerkawski, J. W. 1969. Methane production in ruminants and its significance. World Review of Ruminants and Dietetics 11:240-282.
- Dawson, K. A., M. A. Rasmussen and M. J. Allison. 1997. Digestive disorders and nutritional toxicity. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 633-660.
- Denman, S. E., N. Tomkins and C. S. McSweeney. 2006. Monitoring the effect of bromochloromethane on methanogen populations within the rumen using qPCR. The 2nd International Conference on Greenhouse Gases and Animal Agriculture GGAA2005-Working papers. pp. 112-114.
- Dennis, S. M., T. G. Nagaraja and A. D. Dayton. 1986. Effect of lasalocid, monensin and thiopeptin on rumen protozoa. Res. Vet. Sci. 41:251-256.
- Dohme, F., A. Machmüller, A. Wasserfallen and M. Kreuzer. 2000. Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Can. J. Anim. Sci. 80:473-484. https://doi.org/10.4141/A99-113
- Dohme, F., A. Machmüller, A. Wasserfallen and M. Kreuzer. 2001. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett. Appl. Microbiol. 32:47-51. https://doi.org/10.1046/j.1472-765x.2001.00863.x
- Dong Y., H. D. Bae, T. A. McAllister, G. W. Mathison and K.-J. Cheng. 1997. Lipid-induced depression of methane production and digestibility in the artificial rumen system (RUSITEC). Can. J. Anim. Sci. 77:269-278. https://doi.org/10.4141/A96-078
- Ermler, U., W. Grabarse, S. Shima, M. Goubeaud and R. K. Thauer. 1997. Crystal structure of methyl coenzyme M reductase: the key enzyme of biological methane formation. Sci. 278:1457-1462. https://doi.org/10.1126/science.278.5342.1457
- Fahey, G. C. Jr., L. D. Bourquin, E. C. Titgemeyer and D. G. Atwell. 1993. Postharvest treatment of fibrous feedstuffs to improve their nutritive value. In: Forage Cell Wall Structure and Digestibility (Ed. H. G. Jung, D. R. Buxton, R. D. Hatfield and J. Ralph), American Society of Agronomy, Madison, Wisconsin, USA. pp. 715-766.
- Finlay, B. J., G. Esteban, K. J. Clarke, A. G. Williams, T. M. Embley and R. P. Hirt. 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett. 117:157- 161. https://doi.org/10.1111/j.1574-6968.1994.tb06758.x
- Friedrich, M. W. 2005. Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Methods Enzymol. 397:428-442. https://doi.org/10.1016/S0076-6879(05)97026-2
- Garcia-Martinez, R., M. J. Ranilla, M. L. Tejido and M. D. Carro. 2005. Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage:concentrate ratio. Br. J. Nutr. 94:71-77. https://doi.org/10.1079/BJN20051455
- Gill, H. S., Q. Shu and R. A. Leng. 2000. Immunization with Streptococcus bovis protects against lactic acidosis in sheep. Vaccine. 18:2541-2548. https://doi.org/10.1016/S0264-410X(00)00017-7
- Gomez, J. A., M. L. Tejido and M. D. Carro. 2005. Influence of disodium malate on microbial growth and fermentation in rumen-simulation technique fermenters receiving medium- and high-concentrate diets. Br. J. Nutr. 93:479-484. https://doi.org/10.1079/BJN20041367
- Hegarty, R. S. 2002. Strategies for mitigating methane emissions from livestock-Australian options and opportunities. In: Greenhouse Gases and Animal Agriculture (Ed. J. Takahashi and B. A. Young). Elsevier, Amsterdam. pp. 61-65.
- Hino, T., K. Takeshi, M. Kanda and S. Kumazawa. 1993. Effects of aibellin, a novel peptide antibiotic, on rumen fermentation in vitro. J. Dairy Sci. 76:2213-2221. https://doi.org/10.3168/jds.S0022-0302(93)77558-X
- Hino, T., H. Saitoh, T. Miwa, M. Kanda and S. Kumazawa. 1994. Effect of aibellin, a peptide antibiotic, on propionate production in the rumen of goats. J. Dairy Sci. 77:3426-3431. https://doi.org/10.3168/jds.S0022-0302(94)77285-4
- Hoogenraad, N. J., F. J. Hirk, I. Holmes and N. F. Millis. 1967. Bacteriophages in rumen contents of sheep. J. Gen. Virol. 1:575-576. https://doi.org/10.1099/0022-1317-1-4-575
- Hu, W. L., Y. M. Wu, J. X. Liu, Y. Q. Guo and J. A. Ye. 2005. Tea saponins affect in vitro fermentation and methanogenesis in faunated and defaunated rumen fluid. J. Zhejiang Univ. Sci. 6B:787-792. https://doi.org/10.1631/jzus.2005.B0787
- Hungate, R. E. 1966. The rumen and its microbes. Acad. Press, New York, USA.
- Hungate, R. E., W. Smith, T. Bauchop, Ida Yu and J. C. Rabinowitz. 1970. Formate as an Intermediate in the Bovine Rumen Fermentation. J. Bacteriol. 102:389-397
- Irbis, C. and K. Ushida. 2004. Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J. Gen. Appl. Microbiol. 50:203-212. https://doi.org/10.2323/jgam.50.203
- Iwamoto, M., N. Asanuma and T. Hino. 1999. Effects of nitrate combined with fumarate on methanogenesis, fermentation, and cellulose digestion by mixed ruminal microbes in vitro. Anim. Sci. J. 70:471-478.
- Jarvis, G. N., C. Strompl, D. M. Burgess, L. C. Skillman, E. R. B. Moore and K. N. Joblin. 2000. Isolation and identification of ruminal methanogens from grazing cattle. Curr. Microbiol. 40:327-332. https://doi.org/10.1007/s002849910065
- Kajikawa, H., C. Valdes, K. Hillman, R. J. Wallace and C. J. Newbold. 2003. Methane oxidation and its coupled electronsink reactions in ruminal fluid. Lett. Appl. Microbiol. 36:354- 357. https://doi.org/10.1046/j.1472-765X.2003.01317.x
- Klieve, A. V. and R. S. Hegarty. 1999. Opportunities for biological control of ruminal methanogenesis. Aust. J. Agric. Res. 50: 1315-1320. https://doi.org/10.1071/AR99006
- Klieve, A. V., P. A. Bain, M. T. Yokoyama, D. Ouwerkerk, R. J. Forster and A. F. Turner. 2004. Bacteriophages that infect the cellulolytic ruminal bacterium Ruminococcus albus AR67. Lett. Appl. Microbiol. 38:333-338. https://doi.org/10.1111/j.1472-765X.2004.01493.x
- Kume, S. 2002. Establishment of profitable dairy farming system on control of methane production in Hokkaido region. In: Greenhouse Gases and Animal Agriculture. (Ed. J. Takahashi and B. A. Young), Elsevier, Amsterdam. pp. 87-94.
- Kurihara, M., M. Shibata, T. Nishida, A. Purnomoadi and F. Terada. 1997. Methane production and its dietary manipulation in ruminants. In: Ruminal Microbes and Digestive Physiology in Ruminants (Ed. R. Onodera et al.) Japan Scientific Societies Press, Tokyo, Japan. pp 199-208.
- Kurihara, M., T. Nishida, A. Purnomoadi, M. Shibata and F. Terada. 2002. The prediction of methane conversion rate from dietary factors. In: Greenhouse Gases and Animal Agriculture. (Ed. J. Takahashi and B. A. Young), Elsevier, Amsterdam. pp. 171-174.
- Lee, S. S., J. T. Hsu, H. C. Mantovani and J. B. Russell. 2002. The effect of bovicin HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol. Lett. 217:51-55. https://doi.org/10.1111/j.1574-6968.2002.tb11455.x
- Leng, R. A. 1993. Quantitative ruminant nutrition-A green science. Aust. J. Agric. Res. 44:363-380. https://doi.org/10.1071/AR9930363
- Lila, Z. A., N. Mohammed, S. Kanda, T. Kamada and H. Itabashi. 2003. Effect of sarsaponin on ruminal fermentation with particular reference to methane production in vitro. J. Dairy Sci. 86:3330-3336. https://doi.org/10.3168/jds.S0022-0302(03)73935-6
- Lila, Z. A., N. Mohammed, T. Yasui, Y. Kurokawa, S. Kanda and H. Itabashi. 2004. Effects of a twin strain of saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. J. Anim. Sci. 82:1847-1854. https://doi.org/10.2527/2004.8261847x
- Lovett, D. K., D. McGilloway, A. Bortolozzo, M. Hawkins, J. Callan, B. Flynn and F. P. O'Mara. 2006. In vitro fermentation patterns and methane production as influenced by cultivar and season of harvest of Lolium perenne L. Grass and Forage Sci. 61:9-21. https://doi.org/10.1111/j.1365-2494.2006.00500.x
- Luton, P. E., J. M. Wayne, R. J. Sharp and P. W. Riley. 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiol. 148:3521-3530. https://doi.org/10.1099/00221287-148-11-3521
- Martin, S. A., D. J. Nisbet and R. G. Dean. 1989. Influence of a commercial yeast supplement on the in-vitro ruminal fermentation. Nutr. Rep. Int. 40:395-403.
- McCaughey, W. P., K. Wittenberg and D. Corrigan. 1997. Methane production by steers on pasture. Can. J. Anim. Sci. 77:519-524. https://doi.org/10.4141/A96-137
- Machmuller, A., C. R. Soliva and M. Kreuzer. 2003. Effect of coconut oil and defaunation treatment on methanogenesis in sheep. Reprod. Nutr. Dev. 43:41-55. https://doi.org/10.1051/rnd:2003005
- Mackie, R. I. and F. M. Gilchrist. 1979. Changes in lactateproducing and lactate-utilizing bacteria in relation to pH in the rumen of sheep during stepwise adaptation to a highconcentrate diet. Appl. Environ. Microbiol. 38:422-430.
- McCrabb, G. J., K. T. Berger, T. Magner, C. May and R. A. Hunter. 1997. Inhibiting methane production in Brahman cattle by dietary supplementation with a novel compound and the effects on growth. Aust. J. Agric. Res. 48:323-329. https://doi.org/10.1071/A96119
- Miller, T. L. and M. J. Wolin. 2001. Inhibition of growth of methane-producing bacteria of the ruminant forestomach by hydroxymethylglutaryl-SCoA reductase inhibitors. J. Dairy Sci. 84:1445-1448. https://doi.org/10.3168/jds.S0022-0302(01)70177-4
- Mitsumori, M., N. Ajisaka, K. Tajima, H. Kajikawa and M. Kurihara. 2002a. Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Lett. Appl. Microbiol. 35:251-255. https://doi.org/10.1046/j.1472-765X.2002.01172.x
- Mitsumori, M., K. Tajima and H. Itabashi. 2002b. Detection of methanogens from the rumen by PCR-based techniques In: Greenhouse Gases and Animal Agriculture (Ed. J. Takahashi and B. A. Young), Elsevier, Amsterdam. pp. 125-128.
- Mohammed, N., N. Ajisaka, Z. A. Lila, K. Hara, K. Mikuni, K. Hara, S. Kanda and H. Itabashi. 2004. Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers. J. Anim. Sci. 82:1839-1846. https://doi.org/10.2527/2004.8261839x
- Nagaraja, T. G., C. J. Newbold, C. J. Van Nevel and D. I. Demeyer. 1997. Manipulation of ruminal fermentation. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 523-632.
- Newbold, C. J., R. J. Wallace and N. D. Walker. 1993. The effect of tetronasin and monensin on fermentation, microbial numbers and the development of ionophore-resistant bacteria in the rumen. J. Appl. Bacteriol. 75:129-134. https://doi.org/10.1111/j.1365-2672.1993.tb02757.x
- Newbold, C. J., B. Lassalas and J. P. Jouany. 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 21:230-234. https://doi.org/10.1111/j.1472-765X.1995.tb01048.x
- Newbold, C. J., K. Ushida, B. Morvan, G. Fonty and J. P. Jouany. 1996a. The role of ciliate protozoa in the lysis of methanogenic archaea in rumen fluid. Lett. Appl. Microbiol. 23:421-425. https://doi.org/10.1111/j.1472-765X.1996.tb01350.x
- Newbold, C. J., R. J. Wallace and F. M. McIntosh. 1996b. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Br. J. Nutr. 76:249-261. https://doi.org/10.1079/BJN19960029
- Newbold, C. J., S. Lopez, N. Nelson, J. O. Ouda, R. J. Wallace and A. R. Moss. 2005. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br. J. Nutr. 94:27-35. https://doi.org/10.1079/BJN20051445
- Newbold, C. J. and L. M. Rode. 2006. Dietary additives to control methanogenesis in the rumen. The 2nd International Conference on Greenhouse Gases and Animal Agriculture GGAA2005-Working papers. pp. 60-70.
- Orpin, C. G. and K. N. Joblin. 1997. The rumen anaerobic fungi. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 140-195.
- Regensbogenova, M., N. R. McEwan, P. Javorsky, S. Kisidayova, T. Michalowski, C. J. Newbold, J. H. Hackstein and P. Pristas. 2004. A re-appraisal of the diversity of the methanogens associated with the rumen ciliates. FEMS Microbiol. Lett. 238:307-313. https://doi.org/10.1111/j.1574-6968.2004.tb09771.x
- Russell, J. B. and D. B. Dombrowski. 1980. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl. Environ. Microbiol. 39:604-610.
- Russell, J. B. and R. J. Wallace. 1997. Energy-yielding and energy-consuming reactions. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 246-282.
- Russell, J. B. 1998. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J. Dairy Sci. 81:3222-3230. https://doi.org/10.3168/jds.S0022-0302(98)75886-2
- Russell, J. B. and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Sci. 292:1119-1122. https://doi.org/10.1126/science.1058830
- Russell, J. B. and A. J. Houlihan. 2003. Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiol. Rev. 27:65-74. https://doi.org/10.1016/S0168-6445(03)00019-6
- Satter, L. D., J. W. Suttie and B. R. Baumgardt. 1964. Dietary induced changes in volatile fatty acid formation from cellulose-C14 and hemicellulose-C14. J. Dairy Sci. 47:1365- 1370. https://doi.org/10.3168/jds.S0022-0302(64)88919-0
- Shibata, M., F. Terada, K. Iwasaki, M. Kurihara and T. Nishida. 1992. Methane Production in heifers, sheep and goats consuming diets of various hay-concentrations, Anim. Sci. Technol. 63:1221-1227.
- Shibata, M., F. Terada, M. Kurihara, T. Nishida and K. Iwasaki. 1993. Estimation of methane production in ruminants. Anim. Sci. Technol. 64:790-796.
- Shima, S., E. Warkentin, R. K. Thauer and U. Ermler. 2002. Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen. J. Biosci. Bioeng. 93:519-530. https://doi.org/10.1016/S1389-1723(02)80232-8
- Shu, Q., M. A. Hillard, B. M. Bindon, E. Duan, Y. Xu, S. H. Bird, J. B. Rowe, V. H. Oddy and H. S. Gill. 2000. Effects of various adjuvants on efficacy of a vaccine against Streptococcus bovis and Lactobacillus spp. in cattle. Am. J. Vet. Res. 61:839-843. https://doi.org/10.2460/ajvr.2000.61.839
- Skillman, L. C., P. N. Evans, C. Strompl and K. N. Joblin. 2006. 16S rDNA directed PCR primers and detection of methanogens in the bovine rumen. Lett. Appl. Microbiol. 42:222-228. https://doi.org/10.1111/j.1472-765X.2005.01833.x
- Slyter, L. L. 1986. Ability of pH-Selected Mixed Ruminal Microbial Populations to Digest Fiber at Various pHs. Appl. Environ. Microbiol. 52:390-391.
- Stewart, C. S. 1977. Factors Affecting the Cellulolytic Activity of Rumen Contents. Appl. Environ. Microbiol. 33:497-502.
- Stewart, C. S., H. J. Flint and M. P. Bryant. 1997. The rumen bacteria. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 10-72.
- Swain, R. A., J. V. Nolan and A. V. Klieve AV. 1996. Natural variability and diurnal fluctuations within the bacteriophage population of the rumen. Appl. Environ. Microbiol. 62:994- 997.
- Tajima, K., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67:2766-2774. https://doi.org/10.1128/AEM.67.6.2766-2774.2001
- Takahashi, J., B. Mwenya, B. Santoso, C. Sar, K. Umetsu, T. Kishimoto, K. Nishizaki, K. Kimura and O. Hamamoto. 2005. Mitigation of methane emission and energy recycling in animal agricultural systems. Asian-Aust. J. Anim. Sci. 18:1199-1208. https://doi.org/10.5713/ajas.2005.1199
- Tedeschi, L. O., D. G. Fox and T. P. Tylutki. 2003. Potential environmental benefits of ionophores in ruminant diets. J. Environ. Qual. 32:1591-1602. https://doi.org/10.2134/jeq2003.1591
- Tokura, M., I. Chagan, K. Ushida and Y. Kojima. 1999. Phylogenetic study of methanogens associated with rumen ciliates. Curr. Microbiol. 39:123-128. https://doi.org/10.1007/s002849900432
- Tatsuoka, N., N. Mohammed, M. Mitsumori, K. Hara, M. Kurihara and H. Itabashi. 2004. Phylogenetic analysis of methyl coenzyme-M reductase detected from the bovine rumen. Lett. Appl. Microbiol. 39:257-260. https://doi.org/10.1111/j.1472-765X.2004.01566.x
- Ueno, Y., K. Yamada, N. Yoshida, S. Maruyama and Y. Isozaki. 2006. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature. 440:516- 519. https://doi.org/10.1038/nature04584
- Ulyatt, M. J., K. R. Lassey, I. D. Shelton and C. F. Walker. 2002. Seasonal variation in methane emission from dairy cows and breeding ewes grazing ryegrass/white clover pasture in New Zealand. New Zealand J. Agri. Res. 45:217-226. https://doi.org/10.1080/00288233.2002.9513512
- Ungerfeld, E. M., S. R. Rust and R. Burnett. 2003. Use of some novel alternative electron sinks to inhibit ruminal methanogenesis. Reprod. Nutr. Dev. 43:189-202. https://doi.org/10.1051/rnd:2003016
- Ungerfeld, E. M., S. R. Rust, D. R. Boone and Y. Liu. 2004. Effects of several inhibitors on pure cultures of ruminal methanogens. J. Appl. Microbiol. 97:520-526. https://doi.org/10.1111/j.1365-2672.2004.02330.x
- Ushida, K. and J. P. Jouany. 1996. Methane production associated with rumen-ciliated protozoa and its effect on protozoan activity. Lett. Appl. Microbiol. 23:129-132. https://doi.org/10.1111/j.1472-765X.1996.tb00047.x
- Vogels, G. D., W. F. Hoppe and C. K. Stumm. 1980. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 40:608-612.
- Wallace, R. J. 2004. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 63:621-629. https://doi.org/10.1079/PNS2004393
- Weimer, P. J. 1998. Manipulating ruminal fermentation: a microbial ecological perspective. J. Anim. Sci. 76:3114-3122. https://doi.org/10.2527/1998.76123114x
- Whitelaw, F. G., J. M. Eadie, L. A. Bruce and W. J. Shand. 1984. Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions. Br. J. Nutr. 52:261-275. https://doi.org/10.1079/BJN19840094
- Williams, A. G. and G. S. Coleman. 1997. The rumen protozoa, In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 73-139.
- Wolin, M. J. 1979. The rumen fermentation: a model for microbial interactions in anaerobic ecosystems. Adv. Microbial. Ecol. 3:49-77.
- Wolin, M. J., T. L. Miller and C. S. Stewart. 1997. Microbemicrobe interactions In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Profess. London. pp. 467-491.
- Wright, A. D., P. Kennedy, C. J. O'Neill, A. F. Toovey, S. Popovski, S. M. Rea, C. L. Pimm and L. Klein. 2004a. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine. 22:3976-3985. https://doi.org/10.1016/j.vaccine.2004.03.053
- Wright, A. D., A. J. Williams, B. Winder, C. T. Christophersen, S. L. Rodgers and K. D. Smith. 2004b. Molecular diversity of rumen methanogens from sheep in Western Australia. Appl. Environ. Microbiol. 70:1263-1270. https://doi.org/10.1128/AEM.70.3.1263-1270.2004
- Yan, T., R. E. Agnew, F. J. Gordon and M. G. Porter. 2000. Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livest. Prod. Sci. 64:253-263. https://doi.org/10.1016/S0301-6226(99)00145-1
- Yoshii T., N. Asanuma and T. Hino. 2005. Effect of ethanol on nitrate and nitrite reduction and methanogenesis in the ruminal microbiota. Anim. Sci. J. 76:37-42. https://doi.org/10.1111/j.1740-0929.2005.00235.x
피인용 문헌
- Combination Effects of Nitrocompounds, Pyromellitic Diimide, and 2-Bromoethanesulfonate on in Vitro Ruminal Methane Production and Fermentation of a Grain-Rich Feed vol.60, pp.1, 2012, https://doi.org/10.1021/jf203716v
- Effect of bromochloromethane and fumarate on phylogenetic diversity of the formyltetrahydrofolate synthetase gene in bovine rumen vol.85, pp.1, 2013, https://doi.org/10.1111/asj.12072
- Effect of cashew nut shell liquid on metabolic hydrogen flow on bovine rumen fermentation vol.85, pp.3, 2014, https://doi.org/10.1111/asj.12133
- Effects of Coconut Materials on In vitro Ruminal Methanogenesis and Fermentation Characteristics vol.27, pp.12, 2014, https://doi.org/10.5713/ajas.2014.14216
- Effects of Dietary Linseed Oil and Propionate Precursors on Ruminal Microbial Community, Composition, and Diversity in Yanbian Yellow Cattle vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0126473
- 外源添加产乙酸菌和酿酒酵母发酵物对瘤ƒƒ发酵特性及产乙酸菌菌群结构的影响 vol.16, pp.8, 2015, https://doi.org/10.1631/jzus.B1500013
- rumen fermentation, methanogenesis and methanogens vol.87, pp.3, 2015, https://doi.org/10.1111/asj.12431
- The effect of a high-roughage diet on the metabolism of aromatic compounds by rumen microbes: a metagenomic study using Mehsani buffalo (Bubalus bubalis) vol.100, pp.3, 2016, https://doi.org/10.1007/s00253-015-7239-0
- Effects of Medicinal Herb Extracts on In vitro Ruminal Methanogenesis, Microbe Diversity and Fermentation System vol.29, pp.9, 2016, https://doi.org/10.5713/ajas.16.0053
- Degradabilidade de gramíneas, fermentação e protozoários no rúmen de bovinos em dietas com diferentes aditivos vol.18, pp.2, 2017, https://doi.org/10.1590/s1519-99402017000200006
- The ruminal microbiome associated with methane emissions from ruminant livestock vol.8, pp.1, 2017, https://doi.org/10.1186/s40104-017-0141-0
- In vitro rumen fermentation of soluble and non-soluble polymeric carbohydrates in relation to ruminal acidosis pp.1869-2044, 2017, https://doi.org/10.1007/s13213-017-1307-x
- Sustained reduction in methane production from long-term addition of 3-nitrooxypropanol to a beef cattle diet1 vol.93, pp.4, 2015, https://doi.org/10.2527/jas.2014-8726
- Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations vol.31, pp.1, 2018, https://doi.org/10.5713/ajas.17.0620
- Effects of Gelidium amansii extracts on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations vol.31, pp.1, 2018, https://doi.org/10.5713/ajas.17.0619
- Candidate metabolites for methane mitigation in the forage legume biserrula vol.38, pp.3, 2018, https://doi.org/10.1007/s13593-018-0510-x
- Effect of feeding of blend of essential oils on methane production, growth, and nutrient utilization in growing buffaloes vol.31, pp.5, 2018, https://doi.org/10.5713/ajas.16.0508
- Abatement of Methane Production from Ruminants: Trends in the Manipulation of Rumen Fermentation vol.23, pp.3, 2008, https://doi.org/10.5713/ajas.2010.r.01
- Effect of Eucalyptus globulus leaves extracts on in vitro rumen fermentation, methanogenesis, degradability and protozoa population vol.18, pp.3, 2008, https://doi.org/10.2478/aoas-2018-0006
- Methanobacterium formicicum as a target rumen methanogen for the development of new methane mitigation interventions: A review vol.6, pp.None, 2018, https://doi.org/10.1016/j.vas.2018.09.001
- Creating a low enteric methane emission ruminant: what is the evidence of success to the present and prospects for developing economies? vol.59, pp.10, 2008, https://doi.org/10.1071/an18457
- Impact of Ecklonia stolonifera extract on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations vol.32, pp.12, 2008, https://doi.org/10.5713/ajas.19.0092
- Influence of supplementing Guinea grass with differently processed African yam bean on gas production and in vitro digestibility vol.49, pp.None, 2008, https://doi.org/10.37496/rbz4920200029
- Isolipidic replacement of krabok oil by whole krabok seed reduces in vitro methanogenesis, but negatively affects fermentation vol.104, pp.2, 2020, https://doi.org/10.1111/jpn.13304
- The effects of the forage-to-concentrate ratio on the conversion of digestible energy to metabolizable energy in growing beef steers vol.98, pp.8, 2008, https://doi.org/10.1093/jas/skaa231