Behavior of Juvenile Black Sea Bass, Centropristis striata (Linnaeus) on Oyster Reefs

Oyster reef에서 black sea bass, Centropristis striata 치어의 행동

  • Gwak, Woo-Seok (Department of Marine Biology and Aquaculture, The Institute of Marine Industry, College of Marine Science, Gyeongsang National University)
  • 곽우석 (경상대학교 해양산업연구소, 해양생명과학과)
  • Received : 2008.08.11
  • Accepted : 2008.09.17
  • Published : 2008.09.30

Abstract

The substrate preferences of juvenile black sea bass Centropristis striata (Linnaeus) was tested in a circular tank (1.5 m diameter${\times}$0.4 m deep) divided into two equal areas of oyster-related (oyster reef and whole oyster shell) and sand substrates. All trials were video taped for 20 min. Tapes were viewed on a monitor and locations of all fish recorded and timed with respect to substrate. $Mean{\pm}SE$ times on oyster shell were $18.1{\pm}2.0min$ (1-fish trial-1) and $17.5{\pm}1.7min$ (5-fish trial-1). $Mean{\pm}SE$ times on sand were $2.0{\pm}1.0min$ (1-fish trial-1) and $2.5{\pm}1.7min$ (5-fish trial-1). Black sea bass juveniles showed a significant preference for oyster reef and shell over sand substrate in single-fish trials (paired t-test, P<0.05) and also in five-fish trials (paired t-test, P<0.05). $Mean{\pm}SE$ times under oyster reefs were $16.6{\pm}2.0min$ in single-fish trials and $10.7{\pm}2.3min$ in five-fish trials. Mean numbers of movements among oyster reefs were $1.1{\pm}1.0$ in single-fish trials and $11.5{\pm}3.1$ in fivefish trials. Fish spent significantly less time under oyster reefs in five-fish trials, compared to single-fish trials (paired t-test, P<0.05) and they moved more frequently in five-fish trials than in single-fish trials (paired t-test, P<0.05). Significantly higher competition for a refuge in five-fish trials may induce less time under oyster reefs as well as frequent movement of black sea bass juveniles on shell substrate.

black sea bass 치어(이하 치어라 칭함)의 기질 선택성을 수조 내부의 바닥을 굴 껍질 관련 기질과 모래 기질을 덮어 이등분 한 원형수조(1.5 m 직경${\times}$0.4 m 깊이)에서 조사하였다. 실험어는 1개체를 수조에 넣는 단독수용과 5개체를 넣는 그룹으로 하였다. 모든 치어의 기질 선택행동 실험은 20분간 비디오에 녹화하여 모니터 상에서 관찰하였고 수조 내에서 치어의 위치와 각 기질에서 체류한 시간을 기록하였다. 굴 껍질 관련 기질에서 치어가 보낸 평균시간은 1개체 수용구에서 $18.1{\pm}2.0$분과 5개체 수용구에서 $17.5{\pm}1.7$분으로 나타났다. 한편, 모래기질 위에서는 1개체 수용구에서 $2.0{\pm}1.0$분과 5개체 수용구에서 $2.5{\pm}1.7$분으로 나타났다. 1개체와 5개체의 치어로 수행한 실험 모두에서 모래 기질보다는 굴 껍질 관련 기질에 대해 유의한 선택성을 나타냈다(paired t-test, P<0.05). 굴 껍질 관련 기질 아래 체제시간은 1개체 수용구에서 $16.6{\pm}2.0$분과 5개체 수용구에서 $10.7{\pm}2.3$분으로 나타났다. 굴 껍질 관련 기질 사이를 이동한 횟수는 1개체 수용구에서 $1.1{\pm}1.0$회와 5개체 수용구에서 $11.5{\pm}3.1$회로 나타났다. 치어는 1개체 수용구보다는 5개체 수용구에서 굴 껍질 관련 기질 아래 머무는 시간이 유의하게 적고, 또한 움직임이 많은 것으로 나타났다(paired t-test, P<0.05). 은신처 확보를 위한 치열한 경쟁으로 인해 5개체 수용구의 치어가 굴 껍질 관련 기질 아래 머무는 시간이 적고 움직임이 많은 것으로 추측된다.

Keywords

Acknowledgement

Supported by : University of Georgia Marine Institute, University of Georgia Marine Extension Service

References

  1. Able, K.W., M.P. Fahay and G.R. Shepherd. 1995. Early life history of black sea bass, Centropristis striata, in the mid-Atlantic Bight and a New Jersey estuary. Fish. Bull., 93: 429-445
  2. Arve, J. 1960. Preliminary report on attracting fish by oyster- shell plantings in Chincoteague Bay, Maryland. Chesapeake Sci., 1: 58-65
  3. Auster, P.J., R.J. Malatesta and S.C. LaRosa. 1995. Patterns of microhabitat utilization by mobile megafaunal on the southern New England (USA) continental shelf and slope. Mar. Ecol. Prog. Ser., 127: 77-85 https://doi.org/10.3354/meps127077
  4. Coen, L.D., M.W. Luckenbach and D.L. Breitburg. 1999. The role of oyster reefs as essential fish habitat: A review of current knowledge and some new perspectives. Am. Fish. Soc. Symp., 22: 438-454
  5. Connell, S.D. and G.P. Jones. 1991. The influence of habitat complexity on postrecruitment processes in a temperate reef fish population. J. Exp. Mar. Biol. Ecol., 151: 271-294 https://doi.org/10.1016/0022-0981(91)90129-K
  6. Costa, M.J., H.N. Cabral, P. Drake, A.N. Economou, C. Fernande- Delgado, L. Gordo, J. Marchand and R. Thiel. 2002. Recruitment and production of commercial species in estuaries In: Elliot, M. and K.L. Hemingway (eds.), Fishes in Estuaries. Blackwell Science, Oxford, pp. 54-123
  7. Cupka, D.M., R.K. Dias and J. Tucker. 1973. Biology of the black sea bass Centropristis striata (Pisces: Serranidae), from South Carolina waters. South Carolina Wildlife and Marine Resources Department, Charleston, South Carolina, 93pp
  8. Dionne, M., F.T. Short and D.M. Burdick. 1999. The role of oyster reefs as essential fish habitat: Fish Utilization of restored, created, and Reference Salt-Marsh Habitat in the Gulf of Maine. Am. Fish. Soc. Symp., 22: 384-404
  9. Gwak, W.S. 2003 Effects of shelter on growth and survival in age-0 black sea bass, Centropristis striata (L.). Aquaculture Res., 34: 1387-1390 https://doi.org/10.1111/j.1365-2109.2003.00956.x
  10. Hecht, T. and S. Appelbaum. 1988. Observation of interspecific aggression and coeval sibling cannibalism by larval and juvenile Clarias gariepinus (Claridae: Pisces) under controlled conditions. J. Zool., 214: 21-44 https://doi.org/10.1111/j.1469-7998.1988.tb04984.x
  11. Hixon, M.A. and J.P. Beets. 1989. Shelter characteristics and Caribbean fish assemblages: experiments with artificial reefs. Bull. Mar. Sci., 44: 666-680
  12. Hixon, M.A. and J.P. Beets. 1993. Predation, prey refuges, and the structure of coral-reef fish assemblages. Ecological Monog., 63: 77-101 https://doi.org/10.2307/2937124
  13. Jones, G.P. 1991. Postrecruitment processes in the ecology of coral reef fish populations: a multifactorial perspective In: Sale, P.F. (ed.), The Ecology of Fishes on Coral Reefs. Academic Press, California, pp. 294-328
  14. Kendall, A.W. Jr. 1972. Description of black sea bass Centropristis striata (Linnaeus), larvae and their occurrences north of Cape Lookout, North Carolina, in 1966. Fish. Bull., 70: 1243-1260
  15. Kendall, A.W. Jr. 1977. Biological fisheries data on black sea bass, Centropristis striata (L.). Technical Series Report No. 7. Sandy Hook Laboratory Northwest Fisheries Center, National Marine Fisheries Service NOAA, USA., 29pp
  16. Lehnert, R.L. 2000. Subtidal oyster rubble as overlooked essential fish habitat: with an emphasis on age and growth of young of the year black sea bass (Centropristis striata) in that habitat. MS Thesis. University of South Carolina, Columbia, SC, USA, 165pp
  17. Macpherson, E. 1994. Substrate utilisation in a Mediterranean littoral fish community. Mar. Ecol. Prog. Ser., 114: 211-218 https://doi.org/10.3354/meps114211
  18. McGehee, M.A. 1994. Correspondence between assemblages of coral reef fishes and gradients of water motion, depth, and substrate size off Puerto Rico. Mar. Ecol. Prog. Ser., 105: 243-255 https://doi.org/10.3354/meps105243
  19. Meyer, D.L. 1988. The intertidal distribution of the xanthid crabs Panopeus herbstii and Eurypanopeus depressus in association with oyster reef substrate. MS Thesis. University of North Carolina at Wilmington, NC, USA, 127pp
  20. Murie, D.J., D.C. Parkyn, B.G. Clapp and G.G. Krause. 1994. Observations on the distribution and activities of rockfish, Sebastes spp., in Saanich Inlet, British Columbia, from the Pisces IV submersible. Fish. Bull., 92: 313-323
  21. Musick, J.A. and L.P. Mercer. 1977. Seasonal distribution of black sea bass, Centropristis striata, in the Mid- Atlantic Bight with comments on the ecology of fisheries of the species. Trans. Am. Fish. Soc., 106: 12-25 https://doi.org/10.1577/1548-8659(1977)106<12:SDOBSB>2.0.CO;2
  22. Philipp, F. 2000. Test of competitive interactions for space between two benthic fish species, burbot Lota lota, and stone loach Barbatula barbatula. Environ. Biol. Fish., 58: 439-446 https://doi.org/10.1023/A:1007631107521
  23. SAFMC. 1998. Final habitat plan for the South Atlantic region: Essential Fish Habitat requirements for fishery management plans of the South Atlantic Fishery Management Council. 457pp
  24. Shulman, M.J. 1984. Resource limitation and recruitment patterns in a coral reef fish assemblage. J. Exp. Mar. Biol. Ecol., 74: 85-109 https://doi.org/10.1016/0022-0981(84)90039-X
  25. Shulman, M.J. 1985. Coral reef fish assemblages: intra- and interspecific competition for shelter sites. Environ. Biol. Fish., 13: 81-92 https://doi.org/10.1007/BF00002576
  26. Stein, D.L., B.N. Tissot, M.A. Hixon and W. Barss. 1992. Fish-habitat associations on a deep reef at the edge of the Oregon continental shelf. Fish. Bull., 90: 540-551
  27. Szedlmayer, S.T. and K.W. Able. 1996. Patterns of seasonal availability and habitat use by fishes and decapod crustaceans in a southern New Jersey Estuary. Estuaries, 19: 697-709 https://doi.org/10.2307/1352529
  28. Szedlmayer, S.T. and J.C. Howe. 1997. Substrate preference in age-0 red snapper, Lutjanus campechanus. Environ. Biol. Fish., 50: 203-207 https://doi.org/10.1023/A:1007371514250
  29. Weinstein, M.P., S.L. Weiss, R.G. Hodson and L.R. Gerry. 1980. Retention of three taxa of postlarval fishes in an intensively flushed tidal estuary, cape Fear River, North Carolina. Fish. Bull., 78: 419-435
  30. Wells, H.W. 1961. The fauna of oyster beds, with special reference to the salinity factor. Ecological monog., 31: 239-266 https://doi.org/10.2307/1948554
  31. Williams, D.McB. and P.F. Sale. 1981. Spatial and temporal patterns of recruitment of juvenile coral reef fishes to coral habitats within 'One Tree Lagoon', Great Barrier Reef. Mar. Biol., 65: 245-253 https://doi.org/10.1007/BF00397118