Inhibition of Developmental Processes by Flavone in Caenorhabditis elegans and Its Application to the Pinewood Nematode, Bursaphelenchus xylophilus

  • Lee, Yong-Uk (Department of Bioscience and Biotechnology, and Bio/Molecular Informatics Center, Konkuk University) ;
  • Kawasaki, Ichiro (Department of Bioscience and Biotechnology, and Bio/Molecular Informatics Center, Konkuk University) ;
  • Lim, Yoongho (Department of Bioscience and Biotechnology, and Bio/Molecular Informatics Center, Konkuk University) ;
  • Oh, Wan-Suk (Graduate Program in Functional Genomics, Yonsei University) ;
  • Paik, Young-Ki (Department of Biochemistry and Yonsei Proteome Research Center, Yonsei University) ;
  • Shim, Yhong-Hee (Department of Bioscience and Biotechnology, and Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2008.01.14
  • Accepted : 2008.01.23
  • Published : 2008.08.31

Abstract

Flavone (2-phenyl chromone) is a well-known plant flavonoid, but its bioactivity has been little explored. Treatment of Caenorhabditis elegans or C. brissage with flavones induced embryonic and larval lethality that was pronounced in early larval stages. This anti-nematodal effect was also observed in the pinewood nematode, B. xylophilus. $LD_{50}$ values were approximately $100{\mu}M$ for both B. xylophilus and C. elegans. Our results indicate that flavone is an active nematicidal compound that should be further investigated with the aim of developing a potent drug against B. xylophilus.

Keywords

Acknowledgement

Supported by : KRF, Korea Forest Service

References

  1. Beanan, M.A., and Strome, S. (1992). Characterization of germline proliferation mutation in C. elegans. Development 116, 755-766
  2. Brenner, S. (1973). The genetics of elegans. Genetics 77, 71-94.
  3. Deppe, U., Schierenberg, E., Cole, T., Krieg, C., Schmitt, D., Yoder, B., and Ehrenstein, V.G. (1978). Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 75, 376-380.
  4. Gupta, B.P., and Sternberg, P.W. (2003). The draft genome sequence of the nematode Caenorhabditis briggsae, a companion to to C. elegans. Genome BioI. 4, 238.1-238.4. https://doi.org/10.1186/gb-2003-4-12-238
  5. Hanawa, F., Yamada, T., and Nakashima, T. (2001). Phytoalexins form Pinus strobus bark infected with pinewood nematode, Bursaphelenchus xylophilus. Phytochemisty 57, 223-228. https://doi.org/10.1016/S0031-9422(00)00514-8
  6. Hasegawa, K., Futai, K., Miwa, S., and Miwa, J. (2004). Early embryogenesis of the pinewood nematode Bursaphelenchus xylophilus. Dev. Growth. Differ. 46, 153-161. https://doi.org/10.1111/j.1440-169X.2003.00734.x
  7. Kim, S., and Shim, J. (2008). A forward genetic approach for analyzing the mechanism of resistance to the anti-cancer drug, 5- fluorouracil, using Caenorhabditis elegans. Mol. Cells 25, 119-123 .
  8. Manach, C., Scalbert, A., Morand, C., Rémésy, C., and Jiménez, L. (2004). Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79, 727-747. https://doi.org/10.1093/ajcn/79.5.727
  9. Mota, M.M., Braasch, H., Bravo, M.A., Penas, AC., Burgermeister, W., Metge, K., and Sousa, E. (1999). First report of Bursaphel-enchus xylophilus in Portugal and in Europe. Nematology 1, 727 -734. https://doi.org/10.1163/156854199508757
  10. Nakamura, K., Akashi, T., Aoki, T., Kawaguch, T., and Ayabe, S. (1999). Induction of isoflavonoid and retrochalone branches of the flavonoid pathway in cultured Glycyrrhiza echinata cells treated with yeast extract. Biosci. Biotechnol. Biochem. 63, 1618-1620. https://doi.org/10.1271/bbb.63.1618
  11. Ono, M., Maya, Y., Haratake, M., and Nakayama, M. (2007). Synthesis and characterization of styrylchromone derivatives as $\beta$- amyloid imaging agents. Bioorg. Med. Chem. 15, 444-450. https://doi.org/10.1016/j.bmc.2006.09.044
  12. Park, Y., Lee, Y.U., Kim, H., Lee, Y., Yoon, Y.A., Moon, B., Chong, Y., Ahn, J.H., Shim, Y.H., and Lim, Y. (2006). NMR data of flavone derivatives and their anti-oxidative activities. Bull. Korean Chem. Soc. 27, 1537-1541. https://doi.org/10.5012/bkcs.2006.27.10.1537
  13. Pedras, M.S.C., Chumala, P.B., and Suchy, M. (2003). Phytoalexins from Thlaspi arvense, a wild crucifer resistant to virulen Leptosphaeria machuans: structures, syntheses and antifungal activity. Phytochemistry 64, 949-956. https://doi.org/10.1016/S0031-9422(03)00441-2
  14. Saija, A., Salese, M., Lanza, M., Marzullo, D., Bonina, F., and Castelli, F. (1995). Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free. Radic. Biol. Med. 19, 481-486. https://doi.org/10.1016/0891-5849(94)00240-K
  15. Stein, L.D., Bao, Z., Blasiar, D., Blumenthal, T., Brent, M.R., Chen, N., Chinwalla, A., Clarke, L., Clee, C., Coghlan, A., et al. (2003). The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol. 1, 166-192.
  16. Sulston, J.E., and Brenner, S. (1974). The DNA of Caenorhabditis elegans. Genetics 77, 95-104.
  17. Takai, K., Soejima, T., Suzuki, T., and Kawazu, K. (2000). Emamectin benzoate as a candidate for a trunk-injection agent against the pine wood nematode, Bursaphelenchus xylophilus. Pest. Manag. Sci. 56, 937-941. https://doi.org/10.1002/1526-4998(200010)56:10<937::AID-PS213>3.0.CO;2-B
  18. Yoon, Y.A., Kim, H., Lim, Y., and Shim, Y.H. (2006). Relationships between the larval growth inhibition of Caenorhabditis elegans by apigenin derivatives and their structures. Arch. Pharm. Res. 29, 582-586. https://doi.org/10.1007/BF02969269
  19. Young, J., Park, Y., Lee, Y.U., Kim, H., Shim, Y.H., Ahn, J.H., and Lim, Y. (2007). Antimicrobial effects of flavone analogues and their structure-activity relationships. J. Microbiol. Biotechnol. 17, 530-533.