Identification of Osteogenic Purmorphamine Derivatives

  • Lee, Sung-Jin (Department of Animal Life Resource Science, Kangwon National University) ;
  • Lee, Hak-Kyo (Gyeonggi Regional Research Center, Hankyong National University) ;
  • Cho, Sung Yun (Drug Discovery Division, Korea Research Institute of Chemical Technology) ;
  • Choi, Joong-Kwon (Drug Discovery Division, Korea Research Institute of Chemical Technology) ;
  • Shin, Hea Kyeong (Department of Plastic Surgery, College of Medicine, Dongguk University) ;
  • Kwak, Eun-Jung (Department of Biochemistry, College of Medicine, Chungbuk National University) ;
  • Cho, Mi-Ran (Department of Biochemistry, College of Medicine, Chungbuk National University) ;
  • Kim, Hye-Ryun (Department of Biochemistry, College of Medicine, Chungbuk National University) ;
  • Kim, Seung-Ryol (Department of Biochemistry, College of Medicine, Chungbuk National University) ;
  • Kim, Yong-Min (Department of Orthopaedic Surgery, College of Medicine, Chungbuk National University) ;
  • Park, Kyoung-Jin (Department of Orthopaedic Surgery, College of Medicine, Chungbuk National University) ;
  • Choi, Joong-Kook (Department of Biochemistry, College of Medicine, Chungbuk National University)
  • Received : 2008.04.23
  • Accepted : 2008.05.29
  • Published : 2008.10.31

Abstract

During embryonic and cancer development, the Hedgehog family of proteins, including Sonic Hedgehog, play an important role by relieving the inhibition of Smo by Ptc, thus activating the Smo signaling cascade. Recently, a purine compound, purmorphamine, has been reported to target the Hedgehog signaling pathway by interacting with Smo. Interestingly, both Sonic Hedgehog and purmorphamine were found to promote the osteogenic differentiation of mouse chondroprogenitor cells. However, there is insufficient information as to how the activation of this seemingly unrelated signaling pathway, either by Sonic Hedgehog or purmorphamine, contributes to osteogenesis. Using alkaline phosphatase assays, we screened 125 purmorphamine derivatives from the Korea Chemical Bank for effects on the differentiation of preosteoblast C2C12 cells. Here, we report that two purine derivatives modulate ALP activity as well as the expression of genes whose expression is known or suggested to be involved in osteogenesis.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation, Chungbuk National University

References

  1. Akiyama, H., Chaboissier, M.C., Martin, J.F., Schedl, A., and de Crombrugghe, B. (2002). The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16, 2813-2828 https://doi.org/10.1101/gad.1017802
  2. Beloti, M.M., Bellesini, L.S., and Rosa, A.L. (2005). Purmorphamine enhances osteogenic activity of human osteoblasts derived from bone marrow mesenchymal cells. Cell Biol. Int. 29, 537-541 https://doi.org/10.1016/j.cellbi.2005.02.007
  3. Cancedda, R., Castagnola, P., Cancedda, F.D., Dozin, B., and Quarto, R. (2000). Developmental control of chondrogenesis and osteogenesis. Int. J. Dev. Biol. 44, 707-714
  4. Chen, S., Zhang, Q., Wu, X., Schultz, P.G., and Ding, S. (2004). Dedifferentiation of lineage-committed cells by a small molecule. J. Am. Chem. Soc. 126, 410-411 https://doi.org/10.1021/ja037390k
  5. Cohen, M.M. Jr. (2006). The new bone biology: Pathologic, molecular, and clinical correlates. Am. J. Med. Genet. A 140, 2646-2706
  6. Eames, B.F., de la, F.L., and Helms, J.A. (2003). Molecular ontogeny of the skeleton. Birth Defects Res. C. Embryo. Today 69, 93-101 https://doi.org/10.1002/bdrc.10016
  7. Fanganiello, R.D., Sertie, A.L., Reis, E.M., Yeh, E., Oliveira, N.A., Bueno, D.F., Kerkis, I., Alonso, N., Cavalheiro, S., Matsushita, H., et al. (2007). Apert p.Ser252Trp mutation in FGFR2 alters osteogenic potential and gene expression of cranial periosteal cells. Mol. Med. 13, 422-442
  8. Gibert, S.F. (2006). Intramembranous ossification. Dev. Biol. 8th eds., 420-421
  9. Hall, B.K., and Miyake, T. (1992). The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat. Embryol. 186, 107-124
  10. Hammerschmidt, M., Brook, A., and McMahon, A.P. (1997). The world according to hedgehog. Trends Genet. 13, 14-21 https://doi.org/10.1016/S0168-9525(96)10051-2
  11. Harris, S.E., Guo, D., Harris, M.A., Krishnaswamy, A., and Lichtler, A. (2003). Transcriptional regulation of BMP-2 activated genes in osteoblasts using gene expression microarray analysis: role of Dlx2 and Dlx5 transcription factors. Front Biosci. 8, S1249-1265 https://doi.org/10.2741/1170
  12. Iwamoto, M., Enomoto-Iwamoto, M., and Kurisu, K. (1999). Actions of hedgehog proteins on skeletal cells. Crit. Rev. Oral. Biol. Med. 10, 477-486 https://doi.org/10.1177/10454411990100040401
  13. James, C.G., Appleton, C.T., Ulici, V., Underhill, T.M., and Beier, F. (2005). Microarray analyses of gene expression during chondrocyte differentiation identifies novel regulators of hypertrophy. Mol. Biol. Cell 16, 5316-5333 https://doi.org/10.1091/mbc.E05-01-0084
  14. Karsenty, G., and Wagner, E.F. (2002). Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2, 389-406 https://doi.org/10.1016/S1534-5807(02)00157-0
  15. Kronenberg, H.M. (2003). Developmental regulation of the growth plate. Nature 423, 332-336 https://doi.org/10.1038/nature01657
  16. Lee, J.S., Thomas, D.M., Gutierrez, G., Carty, S.A., Yanagawa, S., and Hinds, P.W. (2006). HES1 cooperates with pRb to activate RUNX2-dependent transcription. J. Bone Miner. Res. 21, 921- 933 https://doi.org/10.1359/jbmr.060303
  17. Lee, S.K., Lee, Z.H., Lee, S.J., Ahn, B.D., Kim, Y.J., Lee, S.H., and Kim, J.W. (2008). DLX3 mutation in a new family and its phenotypic variations. J. Dent. Res. 87, 354-357 https://doi.org/10.1177/154405910808700402
  18. Lengner, C.J., Steinman, H.A., Gagnon, J., Smith, T.W., Henderson, J.E., Kream, B.E., Stein, G.S., Lian, J.B., and Jones, S.N. (2006). Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J. Cell Biol. 172, 909-921 https://doi.org/10.1083/jcb.200508130
  19. Matsuo, N., Tanaka, S., Gordon, M.K., Koch, M., Yoshioka, H., and Ramirez, F. (2006). CREB-AP1 protein complexes regulate transcription of the collagen XXIV gene (Col24a1) in osteoblasts. J. Biol. Chem. 281, 5445-5452 https://doi.org/10.1074/jbc.M509923200
  20. Merlo, G.R., Zerega, B., Paleari, L., Trombino, S., Mantero, S., and Levi, G. (2000). Multiple functions of Dlx genes. Int. J. Dev. Biol. 44, 619-626
  21. Perrimon, N. (1995). Hedgehog and beyond. Cell 80, 517-520 https://doi.org/10.1016/0092-8674(95)90503-0
  22. Sapkota, G., Alarcon, C., Spagnoli, F.M., Brivanlou, A.H., and Massague, J. (2007). Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol. Cell 25, 441-454 https://doi.org/10.1016/j.molcel.2007.01.006
  23. Shum, L., and Nuckolls, G. (2002). The life cycle of chondrocytes in the developing skeleton. Arthritis Res. 4, 94-106
  24. Sinha, S., and Chen, J.K. (2006). Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat. Chem. Biol. 2, 29-30 https://doi.org/10.1038/nchembio753
  25. Spinella-Jaegle, S., Rawadi, G., Kawai, S., Gallea, S., Faucheu, C., Mollat, P., Courtois, B., Bergaud, B., Ramez, V., Blanchet, A.M., et al. (2001). Sonic hedgehog increases the com-mitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J. Cell. Sci. 114, 2085-2094
  26. Suh, J.H., Lee, H.W., Lee, J.W., and Kim, J.B. (2008). Hes1 stimulates transcriptional activity of Runx2 by increasing protein stabilization during osteoblast differentiation. Biochem. Biophys. Res. Commun. 367, 97-102 https://doi.org/10.1016/j.bbrc.2007.12.100
  27. Tataria, M., Quarto, N., Longaker, M.T., and Sylvester, K.G. (2006). Absence of the p53 tumor suppressor gene promotes osteogenesis in mesenchymal stem cells. J. Pediatr. Surg. 41, 624- 632 https://doi.org/10.1016/j.jpedsurg.2005.12.001
  28. Wu, X., Ding, S., Ding, Q., Gray, N.S., and Schultz, P.G. (2002). A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells. J. Am. Chem. Soc. 124, 14520-14521 https://doi.org/10.1021/ja0283908
  29. Wu, X., Itoh, N., Taniguchi, T., Nakanishi, T., Tatsu, Y., Yumoto, N., and Tanaka, K. (2003). Zinc-induced sodium-dependent vitamin C transporter 2 expression: potent roles in osteoblast differenttiation. Arch. Biochem. Biophys. 420, 114-120 https://doi.org/10.1016/j.abb.2003.09.013
  30. Wu, X., Walker, J., Zhang, J., Ding, S., and Schultz, P.G. (2004). Purmorphamine induces osteogenesis by activation of the hedgehog signaling pathway. Chem. Biol. 11, 1229-1238 https://doi.org/10.1016/j.chembiol.2004.06.010
  31. Yamamoto, N., Akiyama, S., Katagiri, T., Namiki, M., Kurokawa, T., and Suda, T. (1997). Smad1 and smad5 act downstream of intracellular signalings of BMP-2 that inhibits myogenic differentiation and induces osteoblast differentiation in C2C12 myoblasts. Biochem. Biophys. Res. Commun. 238, 574-580 https://doi.org/10.1006/bbrc.1997.7325