The Vomeronasal Organ and Adjacent Glands Express Components of Signaling Cascades Found in Sensory Neurons in the Main Olfactory System

  • Lee, Sang Jin (Department of Neuroscience, The Johns Hopkins University, School of Medicine) ;
  • Mammen, Alex (Department of Neuroscience, The Johns Hopkins University, School of Medicine) ;
  • Kim, Esther J. (Department of Neuroscience, The Johns Hopkins University, School of Medicine) ;
  • Kim, So Yeun (Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University) ;
  • Park, Yun Ju (Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University) ;
  • Park, Mira (Department of Ophthalmology, College of Medicine, The Catholic University of Korea) ;
  • Han, Hyung Soo (Brain Science and Engineering Institute, Kyungpook National University) ;
  • Bae, Yong-Chul (Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University) ;
  • Ronnett, Gabriele V. (Department of Neuroscience, The Johns Hopkins University, School of Medicine) ;
  • Moon, Cheil (Department of Neuroscience, The Johns Hopkins University, School of Medicine)
  • Received : 2008.06.24
  • Accepted : 2008.08.12
  • Published : 2008.11.30

Abstract

The vomeronasal organ (VNO) is a sensory organ that influences social and/or reproductive behavior and, in many cases, the survival of an organism. The VNO is believed to mediate responses to pheromones; however, many mechanisms of signal transduction in the VNO remain elusive. Here, we examined the expression of proteins involved in signal transduction that are found in the main olfactory system in the VNO. The localization of many signaling molecules in the VNO is quite different from those in the main olfactory system, suggesting differences in signal transduction mechanisms between these two chemosensory organs. Various signaling molecules are expressed in distinct areas of VNO sensory epithelium. Interestingly, we found the expressions of groups of these signaling molecules in glandular tissues adjacent to VNO, supporting the physiological significance of these glandular tissues. Our finding of high expression of signaling proteins in glandular tissues suggests that neurohumoral factors influence glandular tissues to modulate signaling cascades that in turn alter the responses of the VNO to hormonal status.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF)

References

  1. Abogadie, F.C., Bruch, R.C., Wurzburger, R., Margolis, F.L., and Farbman, A.I. (1995). Molecular cloning of a phosphoinositide-specific phospholipase C from catfish olfactory rosettes. Brain Res. 31, 10-16 https://doi.org/10.1016/0169-328X(95)00030-V
  2. Barber, P.C., and Raisman, G. (1978). Replacement of receptor neurones after section of the vomeronasal nerves in the adult mouse. Brain Res. 147, 297-313 https://doi.org/10.1016/0006-8993(78)90841-7
  3. Bauer, I., Wanner, G.A., Rensing, H., Alte, C., Miescher, E.A., Wolf, B., Pannen, B.H., Clemens, M.G., and Bauer, M. (1998). Expression pattern of heme oxygenase isoenzymes 1 and 2 in normal and stress-exposed rat liver. Hepatology 27, 829-838 https://doi.org/10.1002/hep.510270327
  4. Benovic, J.L., Bouvier, M., Caron, M.G., and Lefkowitz, R J. (1988). Regulation of adenylyl cyclase-coupled b-adrenergic receptors. Ann. Rev. Cell Biol. 4, 405-428 https://doi.org/10.1146/annurev.cb.04.110188.002201
  5. Benovic, J.L., DeBlasi, A., Stone, W.C., Caron, M.G., and Lefkowitz, R.J. (1989). b-adrenergic receptor kinase: primary structure delineates a multigene family. Science 246, 235-240 https://doi.org/10.1126/science.2552582
  6. Berghard, A., and Buck, L.B. (1996). Sensory transduction in vomeronasal neurons: evidence for G alpha o, G alpha i2, and adenylyl cyclase II as major components of a pheromone signaling cascade. J. Neurosci. 16, 909-918 https://doi.org/10.1523/JNEUROSCI.16-03-00909.1996
  7. Berghard, A., Buck, L.B., and Liman, E.R. (1996). Evidence for distinct signaling mechanisms in two mammalian olfactory sense organs. Proc. Natl. Acad. Sci. USA 93, 2365-2369
  8. Biskup, C., Kusch, J., Schulz, E., Nache, V., Schwede, F., Lehmann, F., Hagen, V., and Benndorf, K. (2007). Relating ligand binding to activation gating in CNGA2 channels. Nature 446, 440-443 https://doi.org/10.1038/nature05596
  9. Boekhoff, I., and Breer, H. (1992). Termination of second messenger signaling in olfaction. Proc. Natl. Acad. Sci. USA 89, 471-474
  10. Bonigk, W., Bradley, J., Muller, F., Sesti, F., Boekhoff, I., Ronnett, G.V., Kaupp, U.B., and Frings, S. (1999). The native rat olfactory cyclic nucleotide-gated channel is composed of three distinct subunits. J. Neurosci. 19, 5332-5347 https://doi.org/10.1523/JNEUROSCI.19-13-05332.1999
  11. Bradley, J., Zhang, Y., Bakin, R., Lester, H.A., Ronnett, G.V., and Zinn, K. (1997). Functional expression of the heteromeric "olfactory" cyclic nucleotide-gated channel in the hippocampus: a potential effector of synaptic plasticity in brain neurons. J. Neurosci. 17, 1993-2005 https://doi.org/10.1523/JNEUROSCI.17-06-01993.1997
  12. Bradley, J., Bonigk, W., Yau, K.W., and Frings, S. (2004). Calmodulin permanently associates with rat olfactory CNG channels under native conditions. Nat. Neurosci. 7, 705-710 https://doi.org/10.1038/nn1266
  13. Brann, J.H., Dennis, J.C., Morrison, E.E., and Fadool, D.A. (2002). Type-specific inositol 1,4,5-trisphosphate receptor localization in the vomeronasal organ and its interaction with a transient receptor potential channel, TRPC2. J. Neurochem. 83, 1452-1460 https://doi.org/10.1046/j.1471-4159.2002.01266.x
  14. Breer, H., Klemm, T., and Boekhoff, I. (1992). Nitric oxide mediated formation of cyclic GMP in the olfactory system. NeuroReport 3, 1030-1031 https://doi.org/10.1097/00001756-199211000-00022
  15. Breipohl, W., Bhatnagar, K.P., and Mendoza, A. (1979). Fine structure of the receptor-free epithelium in the vomeronasal organ of the rat. Cell Tissue Res. 200, 383-395
  16. Broillet, M.C., and Firestein, S. (1996). Direct activation of the olfactory cyclic nucleotide-gated channel through modification of sulfhydryl groups by NO compounds. Neuron 16, 377-385 https://doi.org/10.1016/S0896-6273(00)80055-0
  17. Broillet, M.C., and Firestein, S. (1997). Beta subunits of the olfactory cyclic nucleotide-gated channel form a nitric oxide activated Ca2+ channel. Neuron 18, 951-958 https://doi.org/10.1016/S0896-6273(00)80334-7
  18. Broillet, M.C., and Firestein, S. (1999). Cyclic nucleotide-gated channels. Molecular mechanisms of activation. Ann. N. Y. Acad. Sci. 868, 730-740 https://doi.org/10.1111/j.1749-6632.1999.tb11352.x
  19. Bruch, R.C., Abogadie, F.C., and Farbman, A.I. (1995). Identification of three phospholipase C isotypes expressed in rat olfactory epithelium. Neuro Report 6, 233-237 https://doi.org/10.1097/00001756-199501000-00002
  20. Causing, C.G., Gloster, A., Aloyz, R., Bamji, S.X., Chang, E., Fawcett, J., Kuchel, G., and Miller, F.D. (1997). Synaptic innervation density is regulated by neuron-derived BDNF. Neuron 18, 257-267 https://doi.org/10.1016/S0896-6273(00)80266-4
  21. Chen, J., Tu, Y., Moon, C., Nagata, E., and Ronnett, G.V. (2003). Heme oxygenase-1 and heme oxygenase-2 have distinct roles in the proliferation and survival of olfactory receptor neurons mediated by cGMP and bilirubin, respectively. J. Neurochem. 85, 1247-1261 https://doi.org/10.1046/j.1471-4159.2003.01776.x
  22. Cinelli, A.R., Wang, D., Chen, P., Liu, W., and Halpern, M. (2002). Calcium transients in the garter snake vomeronasal organ. J. Neurophysiol. 87, 1449-1472 https://doi.org/10.1152/jn.00651.2001
  23. Collins, E., and Sim, A.T. (1998). Regulation of neuronal PP1 and PP2A during development. Methods Mol. Biol. 93, 79-102
  24. Cowen, T., and Gavazzi, I. (1998). Plasticity in adult and ageing sympathetic neurons. Prog. Neurobiol. 54, 249-288 https://doi.org/10.1016/S0301-0082(97)00071-3
  25. Cunningham, A.M., Ryugo, D.K., Sharp, A.H., Reed, R.R., Snyder, S.H., and Ronnett, G.V. (1993). Neuronal inositol 1,4,5- trisphosphate receptor localized to the plasma membrane of olfactory cilia. Neuroscience 57, 339-352 https://doi.org/10.1016/0306-4522(93)90067-P
  26. Dahlstrand, J., Lardelli, M., and Lendahl, U. (1995). Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res. Dev. Brain Res. 84, 109-129 https://doi.org/10.1016/0165-3806(94)00162-S
  27. Dawson, T.M., Arriza, J.L., Jaworsky, D.E., Borisy, F.F., Attramadal, H., Lefkowitz, R.J., and Ronnett, G.V. (1993). Beta-adrenergic receptor kinase-2 and beta-arrestin-2 as mediators of odorantinduced desensitization. Science 259, 825-829 https://doi.org/10.1126/science.8381559
  28. Dulac, C., and Axel, R. (1995). A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195-206 https://doi.org/10.1016/0092-8674(95)90161-2
  29. Ernst, C., and Christie, B.R. (2005). Nestin-expressing cells and their relationship to mitotically active cells in the subventricular zones of the adult rat. Eur J. Neurosci. 22, 3059-3066 https://doi.org/10.1111/j.1460-9568.2005.04499.x
  30. Farbman, A.I. (1992). Vomeronasal organ, In Cell Biology of Olfaction, P.W. Barlow, D. Bray, P.B. Green, and J. M.W. Slack, eds. (Cambridge: Cambridge University Press), pp. 118-131
  31. Gibson, A.D., and Garbers, D.L. (2000). Guanylyl cyclases as a family of putative odorant receptors. Ann. Rev. Neurosci. 23, 417-439 https://doi.org/10.1146/annurev.neuro.23.1.417
  32. Graziadei, P.P.C., and Monti-Graziadei, G.A. (1979). Neurogenesis and neuron regeneration in the olfactory system of mammals. J. Neurocytol. 8, 1-18 https://doi.org/10.1007/BF01206454
  33. Graziadei, P.P., and Monti Graziadei, A.G. (1983). Regeneration in the olfactory system of vertebrates. Am. J. Otolaryngol. 4, 228-233 https://doi.org/10.1016/S0196-0709(83)80063-5
  34. Ingi, T., and Ronnett, G.V. (1995). Direct demonstration of a physiological role for carbon monoxide in olfactory receptor neurons. J. Neurosci. 15, 8214-8222 https://doi.org/10.1523/JNEUROSCI.15-12-08214.1995
  35. Jia, C., and Halpern, M. (1996). Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Gi alpha 2 and G(o alpha)) and segregated projections to the accessory olfactory bulb. Brain Res. 719, 117-128 https://doi.org/10.1016/0006-8993(96)00110-2
  36. Jones, D.T., and Reed, R.R. (1987). Molecular cloning of five GTPbinding protein cDNA species from rat olfactory neuroepithelium. J. Biol. Chem. 262, 14241-14249
  37. Keilhoff, G., Fansa, H., and Wolf, G. (2003). Nitric oxide synthase, an essential factor in peripheral nerve regeneration. Cell. Mol. Biol. (Noisy-le-grand) 49, 885-897
  38. Keverne, E.B. (1999). The vomeronasal organ. Science 286, 716-720 https://doi.org/10.1126/science.286.5440.716
  39. Kim, S.S., Shin, H.J., Eom, D.W., Huh, J.R., Woo, Y., Kim, H., Ryu, S.H., Suh, P.G., Kim, M.J., Kim, J.Y., et al. (2002). Enhanced expression of neuronal nitric oxide synthase and phospholipase C-gamma1 in regenerating murine neuronal cells by pulsed electromagnetic field. Exp. Mol. Med. 34, 53-59 https://doi.org/10.1038/emm.2002.8
  40. Krieger, J., Schmitt, A., Lobel, D., Gudermann, T., Schultz, G., Breer, H., and Boekhoff, I. (1999). Selective activation of G protein subtypes in the vomeronasal organ upon stimulation with urine-derived compounds. J. Biol. Chem. 274, 4655-4662 https://doi.org/10.1074/jbc.274.8.4655
  41. Kroner, C., Breer, H., Singer, A.G., and O'Connell, R.J. (1996). Pheromone-induced second messenger signaling in the hamster vomeronasal organ. Neuroreport 7, 2989-2992 https://doi.org/10.1097/00001756-199611250-00038
  42. Lanza, J.T., Ku, Y., Lucente, F.E., and Har-El, G. (1995). Wegener's granulomatosis of the orbit: lacrimal gland involvement as a major sign. Am. J. Otolaryngol. 16, 119-122 https://doi.org/10.1016/0196-0709(95)90043-8
  43. Liu, W., Wang, D., Liu, J., Chen, P., and Halpern, M. (1998). Chemosignal transduction in the vomeronasal organ of garter snakes: cloning of a gene encoding adenylate cyclase from the vomeronasal organ of garter snakes. Arch. Biochem. Biophys. 358, 204-210 https://doi.org/10.1006/S0003-9861(98)90000-5
  44. Maines, M.D. (1988). Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 2, 2557-2568 https://doi.org/10.1096/fasebj.2.10.3290025
  45. Margolis, F.L. (1980). A marker protein for the olfactory chemoreceptor neuron. In Proteins of the Nervous System, R.A. Bradshaw, and D.M. Schneider, eds. (New York, USA: Raven), pp. 59-84
  46. Martinez-Marcos, A., Jia, C., Quan, W., and Halpern, M. (2005). Neurogenesis, migration, and apoptosis in the vomeronasal epithelium of adult mice. J. Neurobiol. 63, 173-187 https://doi.org/10.1002/neu.20128
  47. Menco, B.P. (2005). The fine-structural distribution of G-protein receptor kinase 3, beta-arrestin-2, Ca2+/calmodulin-dependent protein kinase II and phosphodiesterase PDE1C2, and a Cl(-)- cotransporter in rodent olfactory epithelia. J. Neurocytol. 34, 11-36 https://doi.org/10.1007/s11068-005-5045-9
  48. Menco, B.P., Tekula, F.D., Farbman, A.I., and Danho, W. (1994). Developmental expression of G-proteins and adenylyl cyclase in peripheral olfactory systems. Light microscopic and freezesubstitution electron microscopic immunocytochemistry. J. Neurocytol. 23, 708-727 https://doi.org/10.1007/BF01181645
  49. Mendoza, A.S., and Kuhnel, W. (1987). Morphological evidence for a direct innervation of the mouse vomeronasal glands. Cell Tissue Res. 247, 457-459
  50. Menezes, J.R., and Luskin, M.B. (1994). Expression of neuronspecific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J. Neurosci. 14, 5399-5416 https://doi.org/10.1523/JNEUROSCI.14-09-05399.1994
  51. Meredith, M. (1994). Chronic recording of vomeronasal pump activation in awake behaving hamsters. Physiol. Behav. 56, 345-354 https://doi.org/10.1016/0031-9384(94)90205-4
  52. Meredith, M., and O'Connell, R.J. (1979). Efferent control of stimulus access to the hamster vomeronasal organ. J. Physiol. 286, 301-316 https://doi.org/10.1113/jphysiol.1979.sp012620
  53. Moon, C., Jaberi, P., Otto-Bruc, A., Baehr, W., Palczewski, K., and Ronnett, G.V. (1998). Calcium-sensitive particulate guanylyl cyclase as a modulator of cAMP in olfactory receptor neurons. J. Neurosci. 18, 3195-3205 https://doi.org/10.1523/JNEUROSCI.18-09-03195.1998
  54. Munger, S.D., Gleeson, R.A., Aldrich, H.C., Rust, N.C., Ache, B.W., and Greenberg, R.M. (2000). Characterization of a phosphoinositide-mediated odor transduction pathway reveals plasma membrane localization of an inositol 1,4,5- trisphosphate receptor in lobster olfactory receptor neurons. J. Biol. Chem. 275, 20450-20457 https://doi.org/10.1074/jbc.M001989200
  55. Otto-Bruc, A., Farris, R.N., Haeseleer, F., Huang, J., Buczylko, J., Suggucheva, I., Baehr, W., Milam, A.H., and Palczewski, K. (1997). Localization of guanylate cyclase-activating protein 2 in mammalian retinas. Proc. Natl. Acad. Sci. USA 94, 4727-4732
  56. Palczewski, K., Subbaraya, I., Gorczyca, W.A., Helekar, B.S., Ruiz, C.C., Ohguro, H., Huang, J., Zhao, X., Crabb, J.W., Johnson, R.S., et al. (1994). Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 13, 395-404 https://doi.org/10.1016/0896-6273(94)90355-7
  57. Ronnett, G.V., and Moon, C. (2002). G proteins and olfactory signal transduction. Annu. Rev. Physiol. 64, 189-222 https://doi.org/10.1146/annurev.physiol.64.082701.102219
  58. Roskams, J.A., Bredt, D.S., and Ronnett, G.V. (1994). Nitric oxide expression during olfactory neuron development and regeneration. AChemS 16, 308
  59. Shapiro, L.S., Roland, R.M., and Halpern, M. (1997). Development of olfactory marker protein and N-CAM expression in chemosensory systems of the opossum, Monodelphis domestica. J. Morphol. 234, 109-129 https://doi.org/10.1002/(SICI)1097-4687(199711)234:2<109::AID-JMOR1>3.0.CO;2-7
  60. Shnayder, L., Schwanzel-Fukuda, M., and Halpern, M. (1993). Differential OMP expression in opossum accessory olfactory bulb. Neuroreport 5, 193-196 https://doi.org/10.1097/00001756-199312000-00001
  61. Simpson, P.J., Miller, I., Moon, C., Hanlon, A.L., Liebl, D.J., and Ronnett, G.V. (2002). Atrial natriuretic Peptide type C induces a cell-cycle switch from proliferation to differentiation in brainderived neurotrophic factor- or nerve growth factor-primed olfactory receptor neurons. J. Neurosci. 22, 5536-5551 https://doi.org/10.1523/JNEUROSCI.22-13-05536.2002
  62. Taniguchi, M., Wang, D., and Halpern, M. (2000). Chemosensitive conductance and inositol 1,4,5-trisphosphate-induced conductance in snake vomeronasal receptor neurons. Chem. Senses 25, 67-76 https://doi.org/10.1093/chemse/25.1.67
  63. Thompson, R.N., Napier, A., and Wekesa, K.S. (2006). Attenuation of the production of inositol 1,4,5-trisphosphate in the mouse vomeronasal organ by antibodies against the alphaq/11 subfamily of G-proteins. Chem. Senses 31, 613-619 https://doi.org/10.1093/chemse/bjj066
  64. Verma, A., Hirsch, D.J., Glatt, C.E., Ronnett, G.V., and Snyder, S.H. (1993). Carbon monoxide: a putative neural messenger. Science 259, 381-384 https://doi.org/10.1126/science.7678352
  65. Walaas, S.I., and Greengard, P. (1991). Protein phosphorylation and neuronal function. Pharmacol. Rev. 43, 299-349
  66. Wang, M.M., and Reed, R.R. (1993). Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364, 121-126 https://doi.org/10.1038/364121a0
  67. Wang, D., Chen, P., Liu, W., Li, C.S., and Halpern, M. (1997a). Chemosignal transduction in the vomeronasal organ of garter snakes: Ca(2+)-dependent regulation of adenylate cyclase. Arch. Biochem. Biophys. 348, 96-106 https://doi.org/10.1006/abbi.1997.0366
  68. Wang, S.S., Tsai, R.Y., and Reed, R.R. (1997b). The characterization of the Olf-1/EBF-like HLH transcription factor family: implications in olfactory gene regulation and neuronal development. J. Neurosci. 17, 4149-4158 https://doi.org/10.1523/JNEUROSCI.17-11-04149.1997
  69. Wang, Z., Balet Sindreu, C., Li, V., Nudelman, A., Chan, G.C., and Storm, D.R. (2006). Pheromone detection in male mice depends on signaling through the type 3 adenylyl cyclase in the main olfactory epithelium. J. Neurosci. 26, 7375-7379 https://doi.org/10.1523/JNEUROSCI.1967-06.2006
  70. Wang, D., Chen, P., Quan, W., and Halpern, M. (2007). Suprasternal gland secretion of male short-tailed opossum induces IP3 generation in the vomeronasal organ. Biochim. Biophys. Acta 1770, 725-732 https://doi.org/10.1016/j.bbagen.2007.01.003
  71. Weiler, E., Apfelbach, R., and Farbman, A.I. (1999). The vomeronasal organ of the male ferret. Chem. Senses 24, 127-136 https://doi.org/10.1093/chemse/24.2.127
  72. Wekesa, K.S., Miller, S., and Napier, A. (2003). Involvement of G(q/11) in signal transduction in the mammalian vomeronasal organ. J. Exp. Biol. 206, 827-832 https://doi.org/10.1242/jeb.00174
  73. Wilson, K.C., and Raisman, G. (1980). Age-related changes in the neurosensory epithelium of the mouse vomeronasal organ: extended period of postnatal growth in size and evidence for rapid cell turnover in the adult. Brain Res. 185, 103-113 https://doi.org/10.1016/0006-8993(80)90675-7
  74. Zufall, F., Ukhanov, K., Lucas, P., Liman, E.R., and Leinders-Zufall, T. (2005). Neurobiology of TRPC2: from gene to behavior. Pflugers Arch. 451, 61-71 https://doi.org/10.1007/s00424-005-1432-4