DOI QR코드

DOI QR Code

Comparative proteomic analysis of peripheral blood mononuclear cells from atopic dermatitis patients and healthy donors

  • Published : 2008.08.31

Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin disease that induces changes in various inflammatory skin cells. The prevalence of AD is as high as 18% in some regions of the world, and is steadily rising. However, the pathophysiology of AD is poorly understood. To identify the proteins involved in AD pathogenesis, a comparative proteomic analysis of protein expression in peripheral blood mononuclear cells isolated from AD patients and healthy donors was conducted. Significant changes were observed in the expressions of fourteen proteins, including the vinculin, PITPNB, and Filamin A proteins. Among the proteins, $\alpha$-SNAP and FLNA decreased significantly, and PITPNB increased significantly in AD patients compared with control subjects; these findings were further confirmed by real-time PCR and Western blot analysis. The comparative proteome data may provide a valuable clue to further understand AD pathogenesis, and several differentially regulated proteins may be used as biomarkers for diagnosis and as target proteins for the development of novel drugs.

Keywords

References

  1. Leung, D. Y. and Bieber, T. (2003) Atopic dermatitis. Lancet 361, 151-160. https://doi.org/10.1016/S0140-6736(03)12193-9
  2. Leung, D. Y., Boguniewicz, M., Howell, M. D., Nomura, I. and Hamid, Q. A. (2004) New insights into atopic dermatitis. J. Clin. Invest. 113, 651-657. https://doi.org/10.1172/JCI21060
  3. Soter, N. A. (1989) Morphology of atopic eczema. Allergy 44, 16-19. https://doi.org/10.1111/j.1398-9995.1989.tb02449.x
  4. Cooper, K. D. (1994) Atopic dermatitis: recent trends in pathogenesis and therapy. J. Invest. Dermatol. 102, 128- 137. https://doi.org/10.1111/1523-1747.ep12371746
  5. Rudikoff, D. and Lebwohl, M. (1998) Atopic dermatitis. Lancet 351, 1715-1721. https://doi.org/10.1016/S0140-6736(97)12082-7
  6. Higashi, N., Gesser, B., Kawana, S. and Thestrup-Pedersen, K. (2001) Expression of IL-18 mRNA and secretion of IL-18 are reduced in monocytes from patients with atopic dermatitis. J. Allergy Clin. Immunol. 108, 607-614. https://doi.org/10.1067/mai.2001.118601
  7. Blackstock, W. P. and Weir, M. P. (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 17, 121-127. https://doi.org/10.1016/S0167-7799(98)01245-1
  8. Sinz, A., Bantscheff, M., Mikkat, S., Ringel, B., Drynda, S., Kekow, J., Thiesen, H. J. and Glocker, M. O. (2002) Mass spectrometric proteome analyses of synovial fluids and plasmas from patients suffering from rheumatoid arthritis and comparison to reactive arthritis or osteoarthritis. Electrophoresis 23, 3445-3456. https://doi.org/10.1002/1522-2683(200210)23:19<3445::AID-ELPS3445>3.0.CO;2-J
  9. Kang, S., Kim, E. Y., Bahn, Y. J., Chung, J. W., Lee, D. H., Park, S. G., Yoon, T.-S., Park, B. C. and Bae, K.-H. (2007) A proteomic analysis of the effect of MAPK pathway activation on L-glutamate-induced neuronal cell death. Cell. Mol. Biol. Lett. 12, 139-147. https://doi.org/10.2478/s11658-006-0057-8
  10. Ryu, S. I., Kim, W. K., Cho, H. J., Lee, P. Y., Jung, H., Yoon, T.-S., Moon, J. H., Kang, S., Poo, H., Bae, K.-H. and Lee, S. C. (2007) Phosphoproteomic analysis of AML14.3D10 cell line as a model system of eosinophilia. J. Biochem. Mol. Biol. 40, 765-772. https://doi.org/10.5483/BMBRep.2007.40.5.765
  11. Yoon, S. W., Kim, T. Y., Sung, M. H., Kim, C. J. and Poo, H. (2005) Comparative proteomic analysis of peripheral blood eosinophils from healthy donors and atopic dermatitis patients with eosinophilia. Proteomics 5, 1987-1995. https://doi.org/10.1002/pmic.200401086
  12. Kang, T. H., Bae, K.-H., Yu, M.-j., Kim, W. K., Hwang, H. R., Jung, H., Lee, P. Y., Kang, S., Yoon, T.-S., Park, S. G., Ryu, S. E. and Lee, S. C. (2007) Phosphoproteomic analysis of neuronal cell death by glutamate-induced oxidative stress. Proteomics 7, 2624-2635. https://doi.org/10.1002/pmic.200601028
  13. Na, K. S., Park, B. C., Jang, M., Cho, S., Lee, D. H., Kang, S., Lee, C.-K., Bae, K.-H. and Park, S. G. (2007) Protein disulfide isomerase is cleaved by caspase-3 and -7 during apoptosis. Mol. Cells 24, 261-267.
  14. Dotzlaw, H., Schulz, M., Eggert, M. and Neeck, G. (2004) A pattern of protein expression in peripheral blood mononuclear cells distinguishes rheumatoid arthritis patients from healthy individuals. Biochim. Biophys. Acta. 1696, 121-129. https://doi.org/10.1016/j.bbapap.2003.09.015
  15. Park, Y. D., Jang, H. S., Kim, S. Y., Ko, S. K., Lyou, Y. J., Lee, D. Y., Paik, Y. K. and Yang, J. M. (2006) Two-dimensional electrophoretic profiling of atopic dermatitis in primary cultured keratinocytes from patients. Proteomics 6, 1362-1370. https://doi.org/10.1002/pmic.200500277
  16. MacLean, J. A. and Eidelman, F. J. (2001) The genetics of atopy and atopic eczema. Arch. Dermatol. 137, 1474-1476
  17. Bowcock, A. M. and Cookson, W. O. (2004) The genetics of psoriasis, psoriatic arthritis and atopic dermatitis. Hum. Mol. Genet. 13, R43-55. https://doi.org/10.1093/hmg/ddh094
  18. Clary, D. O., Griff, I. C. and Rothman, J. (1990) SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61, 709-721. https://doi.org/10.1016/0092-8674(90)90482-T
  19. Jahn, R., Lang, T. and Sudhof, T. C. (2003) Membrane fusion. Cell 112, 519-533. https://doi.org/10.1016/S0092-8674(03)00112-0
  20. Whitecheart, S. W., Griff, I. C., Brunner, M., Clary, D. O., Mayer, T., Buhrow, S. A. and Rothman, J. E. (1993) SNAP family of NSF attachment proteins includes a brain-specific isoform. Nature 362, 353-355. https://doi.org/10.1038/362353a0
  21. Andreeva, A. V., Kutuzov, M. A. and Voyno-Yasenetskaya T. A. (2006) A ubiquitous membrane fusion protein alpha SNAP: a potential therapeutic target for cancer, diabetes and neurological disorder? Expert Opin. Ther. Targets 10, 723-733. https://doi.org/10.1517/14728222.10.5.723
  22. Shukla, A., Berglund, L., Nielsen, L. P., Nielsen, S., Hoffmann, H. J. and Dahl, R. (2000) Regulated exocytosis in immune function: are SNARE-proteins involved? Respir. Med. 94, 10-17. https://doi.org/10.1053/rmed.1999.0700
  23. Khvotchev, M. V., Ren, M., Takamori, S., Jahn, R. and Sudhof, T. C. (2003) Divergent functions of neuronal Rab11b in $Ca^{2+}$-regulated versus constitutive exocytosis. J. Neurosci. 23, 10531-10539. https://doi.org/10.1523/JNEUROSCI.23-33-10531.2003
  24. Revenu, C., Athman, R., Robine, S. and Louvard, D. (2004) The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. 5, 635-646. https://doi.org/10.1038/nrm1437
  25. Robertson, S. P. (2004) Molecular pathology of filamin A: diverse phenotypes, many functions. Clin. Dysmorphol. 13, 123-131. https://doi.org/10.1097/01.mcd.0000130235.95356.40
  26. Ziegler, W. H., Liddington, R. C. and Critchley, D. R. (2006) The structure and regulation of vinculin. Trends Cell Biol. 16, 453-460. https://doi.org/10.1016/j.tcb.2006.07.004
  27. Needleman, R., Amrein, P. and Hartwig, J. H. (1983) The three dimensional structure of actin filaments in solution and an actin gel made with actin-binding protein. J. Cell Biol. 96, 1400-1413. https://doi.org/10.1083/jcb.96.5.1400
  28. Cunningham, C. C., Corlin, J. B., Kwiatkowski, D. J., Hartwig, J. H., Janmey, P. A., Byers, H. R. and Stossel, T. P. (1992) Actin binding protein requirement for cortical stability and efficient locomotion. Science 255, 325-327. https://doi.org/10.1126/science.1549777
  29. Vadlamudi, R. K., Li, F., Adam, L. Nguyen, D., Ohta, Y., Stossel, T. P. and Kumar, R. (2002) Filamin is essential in action cytoskeletal assembly mediated by p21-activated kinase 1. Nat. Cell Biol. 4, 681-690. https://doi.org/10.1038/ncb838
  30. He, H. J., Kole, S., Kwon, Y. K., Crow, M. T. and Bernier, M. (2003) Interaction of filamin A with the insulin receptor alters insulin-dependent activation of the mitogenactivated protein kinase pathway. J. Biol. Chem. 278, 27096-27104. https://doi.org/10.1074/jbc.M301003200
  31. Robertson, S. P. (1998) Filamin A: phenotypic diversity. Curr. Opin. Genet. Dev. 15, 301-307. https://doi.org/10.1016/j.gde.2005.04.001
  32. Leonardi, A., Ellinger-Ziegelbauer, H., Franzoso, G., Brown, K. and Siebenlist, U. (2000) Physical and functional interaction of filamin (actin-binding protein-280) and tumor necrosis factor receptor-associated factor 2. J. Biol. Chem. 275, 271-278. https://doi.org/10.1074/jbc.275.1.271
  33. Hayashi, K. and Altman, A. (2006) Filamin A is required for T cell activation mediated by protein kinase C theta. J. Immunol. 177, 1721-1728. https://doi.org/10.4049/jimmunol.177.3.1721
  34. Westerman, J., De Vries, K. J., Somerharju, P., Timmermans, J. L., Snoek, G. T. and Wirtz, K. W. (1995) A sphingomyelin- transferring protein from chicken liver. Use of pyrenelabeled phospholipid. J. Biol. Chem. 270, 14263-14266. https://doi.org/10.1074/jbc.270.24.14263
  35. Hanifin, J. M. and Rajka, G. (1980) Diagnostic feature of atopic dermatitis. Acta. Derm. Venereol. Suppl. (Stockh) 92, 44-47
  36. Mathesius, U., Keijzers, G., Natera, S. H., Weinman, J. J., Djordijevic, M. A. and Rolfe, B. G. (2001) Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1, 1424-1440. https://doi.org/10.1002/1615-9861(200111)1:11<1424::AID-PROT1424>3.0.CO;2-J
  37. Zhong, J., Wang, Y., Qiu, X., Mo, X., Liu, Y., Song, Q., Ma, D. and Han, W. (2006) Characterization and expression profile of CMTM3/CKLFSF3. J. Biochem. Mol. Biol. 39, 537-545. https://doi.org/10.5483/BMBRep.2006.39.5.537

Cited by

  1. Proteomic analysis of human plasma and peripheral blood mononuclear cells in Systemic Lupus Erythematosus patients vol.446, 2017, https://doi.org/10.1016/j.jim.2017.03.019
  2. Dual-Specificity Phosphatase 10 Controls Brown Adipocyte Differentiation by Modulating the Phosphorylation of P38 Mitogen-Activated Protein Kinase vol.8, pp.8, 2013, https://doi.org/10.1371/journal.pone.0072340
  3. Immune response of peripheral blood mononuclear cells to avian pathogenicEscherichia coli vol.59, pp.3, 2009, https://doi.org/10.1007/BF03175150
  4. Atopic dermatitis-associated protein interaction network lead to new insights in chronic sulfur mustard skin lesion mechanisms vol.10, pp.5, 2013, https://doi.org/10.1586/14789450.2013.841548
  5. Protein tyrosine phosphatase profiling studies during brown adipogenic differentiation of mouse primary brown preadipocytes vol.46, pp.11, 2013, https://doi.org/10.5483/BMBRep.2013.46.11.058