Multi-site Daily Precipitation Generator: Application to Nakdong River Basin Precipitation Gage Network

다지점 일강수 발생모형: 낙동강유역 강수관측망에의 적용

  • Keem, Munsung (Department of Environmental System Engineering, Pukyong National University) ;
  • Ahn, Jae Hyun (Department of Civil Engineering, Seokyeong University) ;
  • Shin, Hyun Suk (Department of Civil Engineering, Pusan National University) ;
  • Han, Suhee (Department of Environmental System Engineering, Pukyong National University) ;
  • Kim, Sangdan (Department of Environmental System Engineering, Pukyong National University)
  • 김문성 (부경대학교 환경시스템공학부) ;
  • 안재현 (서경대학교 토목공학과) ;
  • 신현석 (부산대학교 사회환경시스템공학부) ;
  • 한수희 (부경대학교 환경시스템공학부) ;
  • 김상단 (부경대학교 환경시스템공학부)
  • Received : 2008.07.07
  • Accepted : 2008.10.14
  • Published : 2008.11.30

Abstract

In this study a multi-site daily precipitation generator which generates the precipitation with similar spatial correlation, and at the same time, with conserving statistical properties of the observed data is developed. The proposed generator is intended to be a tool for down-scaling the data obtained from GCMs or RCMs into local scales. The occurrences of precipitation are simultaneously modeled in multi-sites by 2-parameter first-order Markov chain using random variables of spatially correlated while temporally independent, and then, the amount of precipitation is simulated by 3-parameter mixed exponential probability density function that resolves the issue of maintaining intermittence of precipitation field. This approach is applied to the Nakdong river basin and the observed data are daily precipitation data of 19 locations. The results show that spatial correlations of precipitation series are relatively well simulated and statistical properties of observed precipitation series are simulated properly.

Keywords

Acknowledgement

Grant : 기후변화에 따른 수자원영향평가 및 관리방안 수립

Supported by : 한국수자원공사

References

  1. Bardossy, A. and Plate, E. J. (1992). Space-time model for daily rainfall using atmospheric circulation patterns. Water Resources Research, 28, pp. 1247-1259 https://doi.org/10.1029/91WR02589
  2. Bras, R. and Rodriguez-Iturbe, I. (1976). Rainfall generation: a nonstationary time varying multidimensional model. Water Resources Research, 12, pp. 450-456 https://doi.org/10.1029/WR012i003p00450
  3. Bras, R. and Rodriguez-Iturbe, I. (1985). Random Functions and Hydrology, Addison-Wesley, Reading, MA
  4. Burger, G. (1996) Expanded downscaling for generating local weather scenarios. Clim. Res., 7, pp. 111-128 https://doi.org/10.3354/cr007111
  5. Cox, D. R. and Isham, V. (1988). A simple spatial-temporal model of rainfall. Proceedings of the Royal Society London, A415, pp. 317-328
  6. Crosby, D. S. and Maddock, T. III. (1970). Estimating coefficients of a flow generator for monotone samples of data. Water Resources Research, 6, pp. 1079-1086 https://doi.org/10.1029/WR006i004p01079
  7. Foufoula-Georgiou, E. and Lettenmaier, D. P. (1987). A Markov renewal model for rainfall occurrences. Water Resources Research, 23, pp. 875-884 https://doi.org/10.1029/WR023i005p00875
  8. Gates, W. L., Henderson-Sellers, A., Boer, G. J., Folland, C. K., Kitoh, A., McAvaney, J. B., Semazzi, F., Smith, N., Weaver, A. J., and Zeng, Q. C. (1996). Climate modelsevaluation. Climate change 1995, J. T. Houghton, L. G. Filho, B. A. Callander, N. Harris, A. Kattenburg and K. Maskell (eds.), Cambridge University Press, Cambridge, pp. 229-284
  9. Giorgi, F. and Mearns, L. O. (1991). Approaches to simulation of regional climate change: a review. Rev. Geophys., 29, pp. 191-216 https://doi.org/10.1029/90RG02636
  10. Grotch, S. L. and MacCracken, M. C. (1991). The use of general circulation models to predict regional climate change. J. Clim., 4, pp. 286-303 https://doi.org/10.1175/1520-0442(1991)004<0286:TUOGCM>2.0.CO;2
  11. Hanson, C. L., Cumming, K. A., Woolhiser, D. A., and Richardson, C. W. (1994). Microcomputer program for daily weather simulations in the contiguous United States. USDA/ ARS, ARS-114, pp. 38
  12. Kattenberg, A., Giorgi, F., Grassl, H., Meehl, G. A., Mitchell, J. F. B., Stouffer, R. J., Tokioka, T., Weaver, A. J., and Wigley, T. M. L. (1996). Climate models-projections of future climate. Climate change 1995, J. T. Houghton, L. G. Filho, B. A. Callander, N. Harris, A. Kattenburg, and K. Maskell (eds.), Cambridge University Press, Cambridge, pp. 285-357
  13. Katz, R. W. (1977). Precipitation as a chain-dependent process. Journal of Applied Meteorology, 16, pp. 671-676 https://doi.org/10.1175/1520-0450(1977)016<0671:PAACDP>2.0.CO;2
  14. Lettenmaier, D. (1995). Stochastic modeling of precipitation with applications to climate model downscaling. Analysis of Climate Variability: Application of Statistical Techniques, H. von Storch and A. Navarra (eds.), Springer-Verlag, Berlin, pp. 197-212
  15. Mearns, L. O., Schneider, S. H., Thompson, S. L., and McDaniel, L. R. (1990). Analysis of climate variability in general circulation models: comparison with observations and changes in variability in $2{\times}CO_{2}$ experiments. J. Geophy Res, 95, pp. 20469-20490 https://doi.org/10.1029/JD095iD12p20469
  16. Semenov, M. A. and Barrow, E. M. (1997). Use of a stochastic weather generator in the development of climate change scenarios. Clim Change, 35, pp. 397-414 https://doi.org/10.1023/A:1005342632279
  17. Smith, J. A. and Karr, A. F. (1985). Parameter estimation for a model of space-time rainfall. Water Resources Research, 21, pp. 1251-1257 https://doi.org/10.1029/WR021i008p01251
  18. Smith, R. E. and Schreiber, H. A. (1974). Point processes of seasonal thunderstorm rainfall. Part 2: rainfall depth probabilities. Water Resources Research, 10, pp. 418-423 https://doi.org/10.1029/WR010i003p00418
  19. Stern, R. D. and Coe, R. (1984). A model fitting analysis of daily rainfall data. Journal of Royal Statistical Society, A147, pp. 1-34
  20. Todorovic, P. and Woolhiser, D. A. (1975). A stochastic model of n-day precipitation. Journal of Applied Meteorology, 14, pp. 17-24 https://doi.org/10.1175/1520-0450(1975)014<0017:ASMODP>2.0.CO;2
  21. von Storch, H., Zorita, E. and Cubasch, U. (1993). Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime. J. Clim, 6, pp. 1161-1171 https://doi.org/10.1175/1520-0442(1993)006<1161:DOGCCE>2.0.CO;2
  22. Waymire, E. and Gupta, V. K. (1981). The mathematical structure of rainfall representations. 1. A review of the stochastic rainfall models. Water Resources Research, 17, pp. 1261-1272 https://doi.org/10.1029/WR017i005p01261
  23. Waymire, E., Gupta, V. K., and Rodriguez-Iturbe, I. (1984). A spectral theory of rainfall at the meso-$\beta$ scale. Water Resources Research, 20, pp. 1453-1465 https://doi.org/10.1029/WR020i010p01453
  24. Wigley, T. M. L., Jones, P. D., Briffa, K. R., and Smith, G. (1990). Obtaining sub-grid-scale information from coarseresolution general circulation model output. J Geophys Res, 95, pp. 1943-1953 https://doi.org/10.1029/JD095iD02p01943
  25. Wilby, R. L. and Wigley, T. M. L. (1997). Downscaling general circulation model output: a review of methods and limitations. Prog Phys Geogr, 21, pp. 530-548 https://doi.org/10.1177/030913339702100403
  26. Wilks, D. S. (1992). Adapting stochastic weather generation algorithms for climate change studies. Clim Change, 22, pp. 67-84 https://doi.org/10.1007/BF00143344
  27. Wilks, D. S. (1998). Multisite generalization of a daily stochastic precipitation generation model. Journal of Hydrology, 210, pp. 178-191 https://doi.org/10.1016/S0022-1694(98)00186-3
  28. Woo, M. K. (1992). Application of stochastic simulation to climate-change studies. Clim Change, 20, pp. 313-330 https://doi.org/10.1007/BF00142425
  29. Woolhiser, D. A. (1992). Modeling daily precipitation-progress and problems. Statistics in the Environmental and Earth Sciences, A. T. Walden and P. Guttorp (eds.), John Wiley, New York, pp. 71-89
  30. Woolhiser, D. A. and Pegram, G. S. (1979). Maximum likelihood estimation of Fourier coefficients to describe seasonal variation of parameters in stochastic daily precipitation models. Journal of Applied Meteorology, 18, pp. 34-42 https://doi.org/10.1175/1520-0450(1979)018<0034:MLEOFC>2.0.CO;2