Genetic Relationship of Gestation Length with Birth and Weaning Weight in Hanwoo (Bos Taurus Coreanae)

  • Hwang, J.M. (Animal Genetic Improvement Division, National Institute of Animal Science) ;
  • Choi, J.G. (Animal Genetic Improvement Division, National Institute of Animal Science) ;
  • Kim, H.C. (Hanwoo Experiment Station, National Institute of Animal Science) ;
  • Choy, Y.H. (Hanwoo Experiment Station, National Institute of Animal Science) ;
  • Kim, S. (Animal Genetic Improvement Division, National Institute of Animal Science) ;
  • Lee, C. (Ilsong Institute of Life Science, Hallym University) ;
  • Kim, J.B. (Animal Genetic Improvement Division, National Institute of Animal Science)
  • 투고 : 2007.09.07
  • 심사 : 2007.12.27
  • 발행 : 2008.05.01

초록

The genetic relationship of gestation length (GL) with birth and weaning weight (BW, WW) was investigated using data collected from the Hanwoo Experiment Station, National Institute of Animal Science, RDA, Republic of Korea. Analytical mixed models including birth year‐season, sex of calf, linear and quadratic covariates of age of dam (days) and linear covariate of age at weaning (days) as fixed effects were used. Corresponding restricted maximum likelihood (REML) and Bayesian estimates of variance components and heritability were obtained with two models; Model 1 included only direct genetic effect and Model 2 included direct genetic, maternal genetic and permanent environmental effect. All the genetic parameter estimates from REML were corresponding to the Bayesian estimates. Direct heritability estimates for GL, BW, and WW were 0.48, 0.33 and 0.25 by Model 1. From Model 2, direct and maternal heritability estimates were 0.38 and 0.03 for GL, 0.14 and 0.05 for BW, and 0.08 and 0.05 for WW. Genetic correlation estimates between direct and maternal effects were 0.05 for GL, 0.59 for BW, and 0.52 for WW. Estimates of direct genetic correlation between GL and BW (WW) were 0.44 (0.21). Positive genetic correlation of GL with BW and WW imply that selection for greater BW or WW would lead to prolonged gestation length.

키워드

참고문헌

  1. Aziz, M. A., S. Nishida, K. Suzuki and A. Nishida. 2005. Estimation of direct and maternal genetic and permanent environmental effects for weights from birth to 356 days of age in a herd of Japanese Black cattle using random regression. J. Anim. Sci. 83:519-530. https://doi.org/10.2527/2005.833519x
  2. Bennet, G. L. and K. E. Gregory. 1996. Genetic (co)variances among birth weight, and postweaning gain in composites and parental breeds of beef cattle. J. Anim. Sci. 74:2598-2611. https://doi.org/10.2527/1996.74112598x
  3. Bennet, G. L. and K. E. Gregory. 2001. Genetic (co)variances for calving difficulty score in composite and parental populations of beef cattle: II. Reproductive, skeletal, and carcass traits. J. Anim. Sci. 79:52-59. https://doi.org/10.2527/2001.79152x
  4. Boldman, K. G., L. A. Kriese, L. D. Van Vleck, C. P. Van Tassell, and S. D. Kachman. 1995. A manual for use of MTDFREML: A set of programs to obtain estimates of variances and covariances. ARS, USDA, Washington, DC. Bourdon, R. M. and J. S. Brinks. 1982.
  5. Bourdon, R. M. and J. S. Brinks. 1982. Gentic, environmental and phenotypic relationships among gestation length, birth weight, growth traits and age at first calving in beef cattle. J. Anim. Sci. 55:543-553. https://doi.org/10.2527/jas1982.553543x
  6. Cheong, H. S., D. H. Yoon, L. H. Kim, B. L. Park, H. W. Lee, S. Namgoong, E. M. Kim, E. R. Chung, I. Cheong and H. S. Shin. 2008. Association analysis between insulin-like growth factor binding protein 3 (IGFBP3) polymorphisms and carcass traits in cattle. Asian-Aust. J. Anim. Sci. 21:309-313. https://doi.org/10.5713/ajas.2008.60476
  7. Crews, Jr., D. H. 2006. Age of dam and sex of calf adjustments and genetic parameters for gestation length in Charolais cattle. J. Anim. Sci. 84:25-31. https://doi.org/10.2527/2006.84125x
  8. Cundiff, L. V., K. E. Gregory and R. M. Koch. 1998. Germplasm evaluation in beef cattle-cycle IV: Birth and weaning traits. J. Anim. Sci. 76:2528-2535. https://doi.org/10.2527/1998.76102528x
  9. De Mattos, D., I. Misztal and J. K. Bertrand. 2000. Variance and covariance components for weaning weight for Herefords in three countries. J. Anim. Sci. 78:33-37. https://doi.org/10.2527/2000.78133x
  10. Dodenhoff, J., L. D. Van Vleck and D. E. Wilson. 1999. Comparison of models to estimate genetic effects for weaning weight of Angus cattle. J. Anim. Sci. 77:3176-3184. https://doi.org/10.2527/1999.77123176x
  11. Duangjinda, M., J. K. Bertrand, I. Misztal and T. Druet. 2001. Estimation of additive and nonadditive genetic variances in Hereford, Gelvieh, and Charolais by Metod R. J. Anim. Sci. 79:2997-3001. https://doi.org/10.2527/2001.79122997x
  12. Ferreira, G. B., M. D. MacNeil and L. D. Van Vleck. 1999. Variance components and breeding values for growth traits from different statistical models. J. Anim. Sci. 77:2641-2650. https://doi.org/10.2527/1999.77102641x
  13. Gregory, K. E., L. V. Cundiff and R. M. Koch. 1995a. Genetic and phenotypic (co)variances for production traits of intact male populations of purebred and composite beef cattle. J. Anim. Sci. 73:2227-2235. https://doi.org/10.2527/1995.7382227x
  14. Gregory, K. E., L. V. Cundiff and R. M. Koch. 1995b. Genetic and phenotypic (co)variances for production traits of female populations of purebred and composite beef cattle. J. Anim. Sci. 73:2235-2242. https://doi.org/10.2527/1995.7382235x
  15. Groeneveld, E., B. E. Mostert and T. Rust. 1998. The covariance structure of growth traits in the Afrikaner beef population. Livest. Prod. Sci. 55:99-107. https://doi.org/10.1016/S0301-6226(98)00132-8
  16. Gutierrez, J. P., F. Goyache, I. Fernandez, I. Alvarez and L. J. Royo. 2007. Genetic relationships among calving ease, calving interval, birth weight, and weaning weight in the Austriana de los Valles beef cattle breed. J. Anim. Sci. 85:69-75. https://doi.org/10.2527/jas.2006-168
  17. Hagger, C. and A. Hofer. 1990. Genetic analyses of calving traits in the Swiss Black and White, Braunvieh and Simmental breeds by REML and MAPP procedures. Livest. Prod. Sci. 24:93-107. https://doi.org/10.1016/0301-6226(90)90070-M
  18. Hansen, M., M. S. Lund, J. Pedersen and L. G. Christensen. 2004. Gestation length in Danish Holsteins has weak genetic associations with stillbirth, calving difficulty, and calf size. Livest. Prod. Sci. 91:23-33. https://doi.org/10.1016/j.livprodsci.2004.06.007
  19. Kim, J. B. and C. Lee. 2000. Historical look at the genetic improvement in Korean cattle. Asian-Aust. J. Anim. Sci. 13:1467-1481. https://doi.org/10.5713/ajas.2000.1467
  20. Koch, R. M., L. V. Cundiff, K. E. Gregory and L. D. Van Vleck. 2004. Genetic response to selection for weaning weight or yearling weight or yearling weight and muscle score in Hereford cattle: Efficiency of gain, growth, and carcass characteristics. J. Anim. Sci. 82:668-682. https://doi.org/10.2527/2004.823668x
  21. Lasley, J. F., B. N. Day and J. E. Comfort. 1961. Some genetic aspects of gestation length, and birth and weaning weights in Hereford cattle. J. Anim. Sci. 20:737-741. https://doi.org/10.2527/jas1961.204737x
  22. Lee, C., C. P. Van Tassell and E. J. Pollak. 1997. Estimation of genetic variance and covariance components for weaning weight in simmental cattle. J. Anim. Sci. 75:325-330. https://doi.org/10.2527/1997.752325x
  23. Lee, D. H., V. Choudhary and G. H. Lee. 2006. Genetic parameter estimates for ultrasonic meat qualities in Hanwoo cows. Asian-Aust. J. Anim. Sci. 19:468-474. https://doi.org/10.5713/ajas.2006.468
  24. MacNeil, M. D., R. E. Short and E. E. Grings. 2001. Characterization of topcross progenies from Hereford, Limousine, and Piedmontese sires. J. Anim. Sci. 79:1751-1756. https://doi.org/10.2527/2001.7971751x
  25. Meyer, K. 1992. Variance components due to direct and maternal effects for growth traits of Australian beef cattle. Livest. Prod. Sci. 31:179-204. https://doi.org/10.1016/0301-6226(92)90017-X
  26. Meyer, K. 2006. WOMBAT-A program for mixed model analyses by restricted maximum likelihood. User notes. Animal Genetics and Breeding Unit, Armidale, p. 58.
  27. Ministry of Agriculture and Forestry. 2007. The goals for animal mprovement. Official announcement 2007-20 (In Korean).
  28. Newman, S., M. D. MacNeil, W. L. Reynolds, B. W. Knapp and J. J. Urick. 1993a. Fixed effects in the formation of a composite line of beef cattle: I. Experimental design and reproductive performance. J. Anim. Sci. 71:2026-2032. https://doi.org/10.2527/1993.7182026x
  29. Newman, S., M. D. Macneil, W. L. Reynolds, B. W. Knapp and J. J. Uric. 1993b. Fixed effects in the formation of a composite line of beef cattle: II. Pre- and postweaning growth and carcass composition. J. Anim. Sci. 71:2033-2039. https://doi.org/10.2527/1993.7182033x
  30. Nugent 3rd, R. A., D. R. Notter and W. E. Beal. 1991. Body measurements of newborn calves and relationship of calf shape to sire breeding values for birth weight and calving ease. J. Anim. Sci. 69:2413-2421.
  31. Paschal, J. C., J. O. Sanders and J. L. Ken. 1991. Calving and weaning characteristics of Angus-, Gray Brahman-, Gir-, Indu- Brazil-, Nellore-. and Red Brahman-sired F calves. J. Anim. Sci. 69:2395-2402. https://doi.org/10.2527/1991.6962395x
  32. Phocas, F. and D. Laloe. 2004. Genetic parameters for birth and weaning traits in French specialized beef cattle breeds. Livest. Prod. Sci. 89:121-128. https://doi.org/10.1016/j.livprodsci.2004.02.007
  33. Reynolds, W. L., J. J. Urick and B. W. Knapp. 1990. Biological type effects on gestation length, calving traits and calf growth rate. J. Anim. Sci. 68:630-639. https://doi.org/10.2527/1990.683630x
  34. Robinson, D. L. 1996. Estimation and interpretation of direct and maternal genetic parameter for weights of Australian Angus cattle. Livest. Prod. Sci. 45:1-11. https://doi.org/10.1016/0301-6226(95)00083-6
  35. Snelling, W. M., M. D. Macneil, D. D. Kress, D. C. Anderson and W. M. Tess. 1996. Factors influencing genetic evaluation of linebred Hereford cattle in diverse environments. J. Anim. Sci. 74:1499-1510. https://doi.org/10.2527/1996.7471499x
  36. Splan, R. K., L. V. Cundiff, M. E. Dikeman and L. D. Van Vleck. 2002. Estimates of parameters between direct and maternal genetic effects for weaning weight and direct genetic effects for carcass traits in crossbred cattle. J. Anim. Sci. 80:3107-3111. https://doi.org/10.2527/2002.80123107x
  37. Van Tassell, C. P. and L. D. Van Vleck. 1996. Multiple-traits gibbs sampler for animal model: Flexible programs for Bayesian and likelihood-based (co)variance component inference. J. Anim. Sci. 74:2586-2597. https://doi.org/10.2527/1996.74112586x
  38. Waldron, D. F., C. A. Morris, R. L. Baker and D. H. Johnson. 1993. Maternal effects for growth traits in beef cattle. Livest. Prod. Sci. 34:57-70. https://doi.org/10.1016/0301-6226(93)90035-G
  39. Wray, N. R., R. L. Quaas and E. J. Pollak. 1987. Analysis of gestation length in American Simmental cattle. J. Anim. Sci. 65:970-974. https://doi.org/10.2527/jas1987.654970x