DOI QR코드

DOI QR Code

A Preliminary Study on Effects of Different Dietary Selenium (Se) Levels on Growth Performance and Toxicity in Juvenile Black Seabream, Acathopagrus schlegeli (Bleeker)

  • Lee, Seunghyung (Department of Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Lee, Jun-Ho (Department of Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Bai, Sungchul C. (Department of Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University)
  • Received : 2008.04.22
  • Accepted : 2008.06.16
  • Published : 2008.12.01

Abstract

This preliminary feeding trial was conducted to study the effects of different dietary selenium (Se) levels on growth performance and toxicity in juvenile black seabream, Acanthopagrus schlegeli (Bleeker). Fish averaging $7.0{\pm}0.1g$ ($mean{\pm}SD$) were fed one of the five semi-purified diets containing 0.21, 0.30, 0.52, 1.29 and 12.3 mg sodium selenite ($Na_2SeO_3$)/kg diet (Se 0.21, Se 0.30, Se 0.52, Se 1.29 or Se 12.3) for 15 weeks. After the feeding trial, weight gain (WG), feed efficiency (FE), specific growth rate (SGR) and protein efficiency ratio (PER) of fish fed Se 0.21, Se 0.30, Se 0.52 and Se 1.29 diets were not significantly different, however fish fed Se 12.3 diet showed significantly lower WG, FE, SGR and PER than those of fish fed the other diets (p<0.05). Fish fed Se 0.21, Se 0.30, Se 0.52, Se 1.29 and Se 12.3 diets showed no significant differences in hematocrit (PCV), hemoglobin (Hb) and red blood cells (RBC), however fish fed Se 12.3 diet showed lower values of PCV, Hb and RBC than those of fish fed the other diets. Histopathological lesions such as tubular necrosis and polycystic dilation of tubules in the kidney tissues were observed in fish fed Se 12.3 diet. Se was accumulated in a dose-dependent manner in the liver, kidney, muscle and gill tissues. Based on the results of this preliminary feeding trial, a dietary Se level of 0.21 mg $Na_2SeO_3/kg$ diet could be optimal for proper growth performances, and a dietary Se level of 12.3 mg $Na_2SeO_3/kg$ diet may ultimately be toxic to juvenile black seabream, Acanthopagrus schlegeli.

Keywords

References

  1. AOAC (Association of Official Analytical Chemists). 1995. In: Chap. 4, Official methods of analysis of the Association of Official Analytical Chemists. 16th Ed. (Ed. P. Cunniff). Association of Official Analytical Chemists, Inc., Arlington, Virginia, USA. pp. 1-5.
  2. AOAC (Association of Official Analytical Chemists). 2000. In: Chap. 4, Official methods of analysis of the Association of Official Analytical Chemists. 17th Ed. (Ed. P. Cunniff). Association of Official Analytical Chemists, Inc., Arlington, Virginia, USA. pp. 46
  3. Brown, B. A. 1980. Routine hematology procedure. In: Hematology: principles and procedures. (Ed. B. A. Brown). Lea & Febiger, Philadelphia, USA. pp. 71-112
  4. Diplock, P. M. and W. G. Hoekstra. 1976. Metabolic aspects of selenium action and toxicity. Crit. Rev. Toxicol. 5:271-329.
  5. Ganther, H. E. 1974. Biochemistry of selenium. In: Selenium (Ed. R. A. Zingaro and W. C. Cooper). Van Nostrand Reinhold, New York , NY, USA. pp. 546-614.
  6. Gatlin III, D. M. and R. P. Wilson. 1984. Dietary selenium requirement of fingering channel catfish. J. Nutr. 114:627-633. https://doi.org/10.1093/jn/114.3.627
  7. Hamilton, S. J., A. N. Palmisano, G. A. Wedemeyer and W. T. Yasutake. 1986 Impacts of selenium on early life stages and smoltification of fall Chinook salmon. Trans. N. Am. Wildl. Nat. Resour. Conf. 51:343-356.
  8. Hilton, J. W., P. V. Hodson and S. J. Slinger. 1980. The requirement and toxicity of selenium in rainbow trout (Salmo gairdneri). J. Nutr. 110:2527-2535. https://doi.org/10.1093/jn/110.12.2527
  9. Kim, K. W., X. J. Wang and S. C. Bai. 2001. Reevaluation of the optimum dietary protein level for the maximum growth of juvenile Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquacult. Res. 32(S1):119-125. https://doi.org/10.1046/j.1355-557x.2001.00010.x
  10. Kim, K. W., X. J. Wang and S. C. Bai. 2002. Optimum dietary protein level for maximum growth of juvenile olive flounder Paralichthys olivaceus (Temminck et Schlegeli). Aquacult. Res. 33:673-679. https://doi.org/10.1046/j.1365-2109.2002.00704.x
  11. Lee, K. J., K. W. Kim and S. C. Bai. 1998. Effects of different dietary levels of L-ascorbic acid on growth and tissue vitamin C concentration in juvenile Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquacult. Res. 29:237-244. https://doi.org/10.1046/j.1365-2109.1998.00955.x
  12. Lemly, A. D. 1993. Metabolic stress during winter increases the toxicity of selenium to fish. Aqua. Toxicol. 27:133-158. https://doi.org/10.1016/0166-445X(93)90051-2
  13. Lemly, A. D. 2002. Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aqua. Toxicol. 57:39-49. https://doi.org/10.1016/S0166-445X(01)00264-8
  14. Lin, Y. H. and S. Y. Shiau. 2005. Dietary selenium requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 250:356-363. https://doi.org/10.1016/j.aquaculture.2005.03.022
  15. Lyons, M. P., T. T. Papazyan and P. F Surai. 2007. Selenium in food chain and animal nutrition: Lessons from nature (Review). Asian-Aust. J. Anim. Sci. 20:1135-1155. https://doi.org/10.5713/ajas.2007.1135
  16. Mill, G. C. 1957. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J. Biol. Chem. 229:189-197.
  17. Om, A. D., T. Umino, H. Nakagawa, T. Sasaki, K. Okada, M. Asano and A. Nakagawa. 2001. The effects of dietary EPA and DHA fortification on lipolysis activity and physiological function in juvenile black sea bream Acanthopagrus schlegeli (Bleeker). Aquacult. Res. 32(S1):255-262. https://doi.org/10.1046/j.1355-557x.2001.00040.x
  18. Reddy, C. C. and E. J. Massaro. 1983. Biochemistry of selenium: an overview. Fund. Appl. Toxicol. 3:431-436. https://doi.org/10.1016/S0272-0590(83)80017-7
  19. Rotruck, J. T., A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman and W. G. Hoekstra. 1973. Selenium: biochemical role as a component of glutathione peroxidase. Sci. 179:585-590. https://doi.org/10.1126/science.179.4073.585
  20. Stadtman, T. C. 1974. Selenium biochemistry. Sci. 183:915-922. https://doi.org/10.1126/science.183.4128.915
  21. Sunde, R. A. 1984. The biochemistry of selenoproteins. J. Am. Chem. Soc. 61:1891-1900. https://doi.org/10.1007/BF02540827
  22. Tashjian, D. H., S. J. The, A. Sogomonyan and S. S. O. Hung. 2006. Bioaccumulation and chronic toxicity of dietary L-selenomethonine in juvenile white sturgeon (Acipenser transmontanus). Aqua. Toxicol. 79:401-409. https://doi.org/10.1016/j.aquatox.2006.07.008
  23. Teh, S. J., X. Deng, D. F. Deng, F. C. Teh, S. S. O. Hung, T. W. M. Fan, J. Liu and R. M. Higashi. 2004. Chronic effects of dietary selenium on juvenile Sacramento splittail (Pogonichthys macrolepidotus). Environ. Sci. Technol. 38:6085-6093. https://doi.org/10.1021/es049545+
  24. Wang, C. and R. T. Lovell. 1997. Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus). Aquaculture 152:223-234. https://doi.org/10.1016/S0044-8486(96)01523-2

Cited by

  1. Evaluation of the Dietary Toxic Level of Selenium (Se) in Juvenile Olive Flounder, Paralichthys olivaceus vol.41, pp.17497345, 2010, https://doi.org/10.1111/j.1749-7345.2010.00364.x
  2. Total Bioavailable Organic Selenium in Fishmeal-Based Diet Influences Growth and Physiology of Juvenile Cobia Rachycentron canadum (Linnaeus, 1766) pp.1559-0720, 2019, https://doi.org/10.1007/s12011-018-1565-x
  3. vol.50, pp.3, 2018, https://doi.org/10.1111/are.13956
  4. Safety and efficacy of selenium compounds (E8) as feed additives for all animal species: Sodium selenite, based on a dossier submitted by Todini and Co SpA vol.14, pp.3, 2008, https://doi.org/10.2903/j.efsa.2016.4442
  5. Long-term organic selenium supplementation overcomes the trade-off between immune and antioxidant systems in pacu (Piaractus mesopotamicus) vol.60, pp.None, 2008, https://doi.org/10.1016/j.fsi.2016.11.060
  6. An evaluation of dietary selenium nanoparticles for red sea bream (Pagrus major) aquaculture: growth, tissue bioaccumulation, and antioxidative responses vol.26, pp.30, 2008, https://doi.org/10.1007/s11356-019-06223-6
  7. Synergistic Effects of Selenium Nanoparticles and Vitamin E on Growth, Immune-Related Gene Expression, and Regulation of Antioxidant Status of Nile Tilapia (Oreochromis niloticus) vol.195, pp.2, 2008, https://doi.org/10.1007/s12011-019-01857-6
  8. Trial for use nanoselenium particle with different dietary regime in Oreochromis niloticus and Mugil cephalus polyculture ponds: Growth efficiency, haematological, antioxidant, immunity and transcript vol.7, pp.5, 2008, https://doi.org/10.1002/vms3.490
  9. Effect of dietary inactivated Lactobacillus plantarum and selenomethionine supplementation on growth performance and health‐related indices of black sea bream ( Acanthopagrus Schlegelii ) finge vol.27, pp.5, 2008, https://doi.org/10.1111/anu.13294