Regulation of Leaf Senescence by NTL9-mediated Osmotic Stress Signaling in Arabidopsis

  • Yoon, Hye-Kyung (Molecular Signaling Laboratory, Department of Chemistry, Seoul National University) ;
  • Kim, Sang-Gyu (Molecular Signaling Laboratory, Department of Chemistry, Seoul National University) ;
  • Kim, Sun-Young (Molecular Signaling Laboratory, Department of Chemistry, Seoul National University) ;
  • Park, Chung-Mo (Molecular Signaling Laboratory, Department of Chemistry, Seoul National University)
  • Received : 2007.10.16
  • Accepted : 2007.12.06
  • Published : 2008.05.31

Abstract

Leaf senescence is a highly regulated genetic process that constitutes the last stage of plant development and provides adaptive fitness by relocating metabolites from senescing leaves to reproducing seeds. Characterization of various senescence mutants, mostly in Arabidopsis, and genome-wide analyses of gene expression, have identified a wide array of regulatory components, including transcription factors and enzymes as well as signaling molecules mediating growth hormones and environmental stress responses. In this work we demonstrate that a membrane-associated NAC transcription factor, NTL9, mediates osmotic stress signaling in leaf senescence. The NTL9 gene is induced by osmotic stress. Furthermore, activation of the dormant, membrane-associated NTL9 is elevated under the same conditions. A series of senescence-associated genes (SAGs) were upregulated in transgenic plants overexpressing an activated form of NTL9, and some of them were slightly but reproducibly downregulated in a T-DNA insertional NTL9 knockout mutant. These observations indicate that NTL9 mediates osmotic stress responses that affect leaf senescence, providing a genetic link between intrinsic genetic programs and external signals in the control of leaf senescence.

Keywords

Acknowledgement

Supported by : National Research Laboratory, Korea Research Foundation, Korea Science and Engineering Foundation

References

  1. Binyamin, L., Falah, M., Portnoy, V., Soudry, E., and Gepstein, S. (2001). The early light-induced protein is also produced during leaf senescence of Nicotiana tabacum. Planta 212, 591-597 https://doi.org/10.1007/s004250000423
  2. Bohnert, H.J., Nelson, D.E., and Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell 7, 1099-1111 https://doi.org/10.1105/tpc.7.7.1099
  3. Brown, M.S., Ye, J., Rawson, R.B., and Goldstein, J.L. (2000). Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391-398 https://doi.org/10.1016/S0092-8674(00)80675-3
  4. Buchanan-Wollaston, V. (1994). Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus. Identification of a gene encoding a senescencespecific metallothionein-like protein. Plant Physiol. 105, 839-846 https://doi.org/10.1104/pp.105.3.839
  5. Buchanan-Wollaston, V., and Ainsworth, C. (1997). Leaf sensecence in Brassica napus: cloning of senescence related genes by subtractive hybridization. Plant Mol. Biol. 33, 821-834 https://doi.org/10.1023/A:1005774212410
  6. Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P.O., Nam, H.G., Lin, J.F., Wu, S.H., Swidzinski, J., and Ishizaki, K., et al. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation- induced senescence in Arabidopsis. Plant J. 42, 567-585 https://doi.org/10.1111/j.1365-313X.2005.02399.x
  7. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  8. Dangl, J.L., Dietrich, R.A., and Thomas, H. (2000). Senescence and programmed cell death. In Biochemistry and Molecular Biology of Plants, B.B. Buchanan, W. Gruissem and R.L. Jones, eds. (Rockville: Courier Companies), pp. 1044-1099
  9. Gan, S., and Amasino, R.M. (1997). Making sense of sensecence. Plant Physiol. 113, 313-319 https://doi.org/10.1104/pp.113.2.313
  10. Gepstein, S., Sabehi, G., Carp, M.J., Hajouj, T., Nesher, M.F., Yariv, I., Dor, C., and Bassani, M. (2003). Large-scale identification of leaf senescence-associated genes. Plant J. 36, 629-642 https://doi.org/10.1046/j.1365-313X.2003.01908.x
  11. Guo, Y., Cai, Z., and Gan, S. (2004). Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ. 27, 521-549 https://doi.org/10.1111/j.1365-3040.2003.01158.x
  12. Guo, Y., and Gan, S. (2006). AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 46, 601-612 https://doi.org/10.1111/j.1365-313X.2006.02723.x
  13. Hanfrey, C., Fife, M., and Buchanan-Wollaston, V. (1996). Leaf senescence in Brassica napus: expression of genes encoding pathogenesis-related proteins. Plant Mol. Biol. 30, 597-609 https://doi.org/10.1007/BF00049334
  14. He, Y., Fukushige, H., Hildebrand, D.F., and Gan, S. (2002). Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 128, 876-884 https://doi.org/10.1104/pp.010843
  15. Hoppe, T., Rape, M., and Jentsch, S. (2001). Membrane-bound transcription factors: regulated release by RIP or RUP. Curr. Opin. Cell Biol. 13, 344-348 https://doi.org/10.1016/S0955-0674(00)00218-0
  16. Iwata, Y., and Koizumi, N. (2005). An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc. Natl. Acad. Sci. USA 102, 5280-5285
  17. John, I., Hackett, R., Cooper, W., Drake, R., Farrell, A., and Grierson, D. (1997). Cloning and characterization of tomato leaf senescence-related cDNAs. Plant Mol. Biol. 33, 641-651 https://doi.org/10.1023/A:1005746831643
  18. Kaffman, A., and O'Shea, E.K. (1999). Regulation of nuclear localization: a key to a door. Annu. Rev. Cell Dev. Biol. 15, 291-339 https://doi.org/10.1146/annurev.cellbio.15.1.291
  19. Kim, Y.S., Kim, S.G., Park, J.E., Park, H.Y., Lim, M.H., Chua, N.H., and Park, C.M. (2006). A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell 18, 3132-3144 https://doi.org/10.1105/tpc.106.043018
  20. Kim, S.G., Kim, S.Y., and Park, C.M. (2007a). A membraneassociated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226, 647-654 https://doi.org/10.1007/s00425-007-0513-3
  21. Kim, S.Y., Kim, S.G., Kim, Y.S., Seo, P.J., Bae M., Yoon, H.K., and Park, C.M. (2007b). Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res. 35, 203-213 https://doi.org/10.1093/nar/gkl1068
  22. Lim, P.O., and Nam, H.G. (2005). The molecular and genetic control of leaf senescence and longevity in Arabidopsis. Curr. Top. Dev. Biol. 67, 49-83 https://doi.org/10.1016/S0070-2153(05)67002-0
  23. Lim, P.O., Woo, H.R., and Nam, H.G. (2003). Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci. 8, 272-278 https://doi.org/10.1016/S1360-1385(03)00103-1
  24. Lim, P.O., Kim, H.J., and Nam, H.G. (2007). Leaf senescence. Annu. Rev. Plant Biol. 58, 115-136 https://doi.org/10.1146/annurev.arplant.57.032905.105316
  25. Lin, J.F., and Wu, S.H. (2004). Molecular events in senescing Arabidopsis leaves. Plant J. 39, 612-628 https://doi.org/10.1111/j.1365-313X.2004.02160.x
  26. Morris, K., MacKerness, S.A., Page, T., John, C.F., Murphy, A.M., Carr, J.P., and Buchanan-Wollaston, V. (2000). Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J. 23, 677-685 https://doi.org/10.1046/j.1365-313x.2000.00836.x
  27. Olsen, A.N., Ernst, H.A., Leggio, L.L., and Skriver, K. (2005). NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10, 79-87 https://doi.org/10.1016/j.tplants.2004.12.010
  28. Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci P., et al. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 10, 239-247 https://doi.org/10.1093/dnares/10.6.239
  29. Pourtau, N., Mares, M., Purdy, S., Quentin, N., Ruel, A., and Wingler, A. (2004). Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence. Planta 219, 765-772
  30. Pourtau, N., Jennings, R., Pelzer, E., Pallas, J., and Wingler, A. (2006). Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta 224, 556-568 https://doi.org/10.1007/s00425-006-0243-y
  31. Quirino, B.F., Normanly, J., and Amasino, R.M. (1999). Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defenserelated genes. Plant Mol. Biol. 40, 267-278 https://doi.org/10.1023/A:1006199932265
  32. Quirino, B.F., Noh, Y.S., Himelblau, E., and Amasino, R.M. (2000). Molecular aspects of leaf senescence. Trends Plant Sci. 5, 278-282 https://doi.org/10.1016/S1360-1385(00)01655-1
  33. Schwacke, R., Schneider, A., van der Graaff, E., Fischer, K., Catoni, E., Desimone, M., Frommer, W.B., Flügge, U.I., and Kunze, R. (2003). ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol. 131,16-26 https://doi.org/10.1104/pp.011577
  34. Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., and Zhu, J.K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45, 523-539 https://doi.org/10.1111/j.1365-313X.2005.02593.x
  35. Vik, A., and Rine, J. (2000). Membrane biology: membraneregulated transcription. Curr. Biol. 10, R869-R871 https://doi.org/10.1016/S0960-9822(00)00601-1
  36. Weaver, L.M., Gan, S., Quirino, B., and Amasino, R.M. (1998). A comparison of the expression patterns of several senescenceassociated genes in response to stress and hormone treatment. Plant Mol. Biol. 37, 455-469 https://doi.org/10.1023/A:1005934428906
  37. Xiong, L., and Zhu, J.K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 25, 131-139 https://doi.org/10.1046/j.1365-3040.2002.00782.x
  38. Yoo, S.C., Cho, S.H., Zhang, H., Paik, H.C., Lee, C.H., Li, J., Yoo, J.H., Lee, B.W., Koh, H.J., Seo, H.S., et al. (2007). Quantitative trait loci associated with functional stay-green SNU-SG1 in rice. Mol. Cells 24, 83-94
  39. Yoshida, S. (2003). Molecular regulation of leaf senescence. Curr. Opin. Plant Biol. 6, 79-84 https://doi.org/10.1016/S1369526602000092
  40. Zhu, J.K. (2001). Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 4, 401-406 https://doi.org/10.1016/S1369-5266(00)00192-8
  41. Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247-273 https://doi.org/10.1146/annurev.arplant.53.091401.143329