Growth Kinetics of Phytoplankton in Shallow Eutrophic Reservoir

얕은 부영양 저수지에서의 식물플랑크톤 성장 역학

  • Received : 2008.06.03
  • Accepted : 2008.08.01
  • Published : 2008.09.30

Abstract

This study was conducted to assess the growth characteristics of phytoplankton and to understand seasonal dynamics of phytoplankton in response to limiting nutrients in an agricultural reservoir from November 2002 to December 2003. Marked increase of chl.a concentration observed in July ($99.0{\mu}g/L$) and November ($109.7{\mu}g/L$) after heavy rainfall. TP concentration ranged $48.0{\sim}126.6{\mu}g/L$, and its the temporal variation was similar to that of chl.a concentration. Microcystis spp., dominant phytoplankton species were used for the growth kinetics experiment, except for the season when Aulacoseira spp. (March, April) and Aphanocapsa sp. (May) dominated. In the temperature range between $10{\sim}25^{\circ}C$, the rate of growth increase per $10^{\circ}C$ was almost two folds. The highest maximum growth rate (${\mu}_{max}=1.09day^{-1}$) of phytoplankton observed September, and ${\mu}_{max}$ was lowest ($0.34day^{-1}$) in March when Aulacoseira spp. dominated. The ${\mu}_{max}$ ($0.78{\pm}0.20day^{-1}$) was relatively high in the summer season when water temperature is above $20^{\circ}C$ and cyanobacteria dominated compared to the spring when diatoms dominated ($0.43{\pm}0.08day^{-1}$). The maximum growth rate ($0.55{\pm}0.12day^{-1}$) and the half saturation concentration ($K_s=0.73{\pm}0.15{\mu}M$) of cyanobacteria during winter season (November, December) was higher than those of diatoms. However, the ${\mu}_{max}$ and $K_s$ of cyanobacteria in December was similar to those of diatom, reflecting that diatom cell quota (Mean 48.4 pgP/cell) was greater than cyanobacteria (34.0 pgP/cell) during this time.

Keywords

Acknowledgement

Grant : 농업용저수지의 녹조 제어기법개발 연구

Supported by : 농림부

References

  1. 김호섭, 공동수, 황순진(2005). 얕은 부영양저수지의 동.식물플랑크톤 군집변화 특성. 한국육수학회지, 38(1), pp. 18-29
  2. 김호섭, 최은미, 김동우, 공동수, 김경만, 김범철(2007a). 농업용저수지 유역환경특성에 따른 수질경향 분석. 한국육수학회지, 40(2), pp. 214-222
  3. 김호섭, 황순진(2004a). 부영양 저수지에서 식물플랑크톤 성장에 대한 제한영양염과 질소/인 비의 영향. 한국육수학회지, 37(1), pp. 36-46
  4. 김호섭, 황순진(2004b). 얕은 부영양 저수지의 육수학적 특성: 계절에 따른 수질변화. 한국육수학회지, 37(2), pp. 180-192
  5. 김호섭, 황순진(2004c). 육수학적 특성에 따른 국내 저수지의 부영양화 유형분석: 엽록소 a와 수심을 중심으로. 한국육수학회지, 37(2), pp. 213-226
  6. 김호섭, 황순진, 공동수(2007b). 부영양저수지에서 남조류의 발달과 천이 및 영향요인. 한국육수학회지, 40(1), pp. 121-129
  7. 신재기, 조주래, 황순진, 조경재(2000). 경안천-팔당호의 부영 양화와 수질오염특성. 한국육수학회지, 33(4), pp. 387-394
  8. 최광현, 황순진, 김호섭, 한명수(2003). 팔당호 식물플랑크톤의 제한영양염과 성장률의 경시적 변화. 한국육수학회지, 36(2), pp. 139-149
  9. 한명수, 유재근, 유광일, 공동수(1993). 팔당호의 생태학적 연구 1. 수질의 연변화:과거와 현재. 한국육수학회지, 33, pp. 141-149
  10. APHA (1995). Standard Methods for the Examination of Water and Wastewater, 19th ed., APHA-AWWA-WEF, Washington, D. C., USA
  11. Bold, H. C. and Wynne, M. J. (1978). Introduction to the algae, Prentice-Hall Inc., Englewood cliffs, New Jersey
  12. Carpenter, S. R. and Kitchell, J. R. (1993). Cascading trophic interactions and lake productivity. Bioscience, 35, pp. 634-639 https://doi.org/10.2307/1309989
  13. Cichra, M. F., Badylak, S., Henderson, N., Rueter, B. H., and Philips, E. J. (1995). Phytoplankton community structure in the open water zone of a shallow subtropical lake (Lake Okeechobee, Florida, U.S.A.). Arch. fur Hydrobiologie, Advances in Limnology, 45, pp. 157-175
  14. Forsberg, O. and Ryding, S. O. (1980). Eutrophication parameters and trophic state indices in 30 Swedish waste-receiving lakes. Arch. Hydrobiol., 89, pp. 189-207
  15. Grover, J. P. (1989). Phosphorus-dependent growth kinetics of 11species of freshwater algae. Limnol. Oceanogr., 34, pp. 341-348 https://doi.org/10.4319/lo.1989.34.2.0341
  16. Horne, A. J. and Goldman, C. H. (1994). Limnology 2nd edition, Mcgraw-hill Inc., Singapore
  17. Ichimura, T. (1978). Media for blue-green algae. Methods in Algalogical studies, K. Nishizawa and M. Chihara (eds.), Kyoritsu, Tokyo, p. 294
  18. Kalff, J. (2002). Limnology : Inland water Ecosystem, Prentice hall, New Jersey
  19. Lathrop, R. C. and Carpenter, S. R. (1990). Zooplankton and their relationship to phytoplankton. Food Web management, J. F. Kitchell (ed.), Springer-Verlag, New York, pp. 127-150
  20. Marker, A. F. H. (1972). The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshwater Biol., 2, pp. 361-385 https://doi.org/10.1111/j.1365-2427.1972.tb00377.x
  21. Marker, A. F. H., Nusch, E. A., Rai, I., and Riemann, B. (1980). The measurement of photosynthetic pigments in freshwaters and standardization of methods: Conclusions and recommendations. Arch. Hydrobiol. Beih., 14, pp. 91-106
  22. Monod, J. (1950). La technique de culture continue: theorie at applications. Annales de l'Institut Pasteur de Lille, 79, pp. 390-410
  23. Reynolds, C. S. (1993). The Ecology of freshwater Phytoplankton. Cambridge University Press, Cambridge, U.K
  24. Reynolds, C. S. (1984). Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biol., 14, pp. 111-142 https://doi.org/10.1111/j.1365-2427.1984.tb00027.x
  25. Romo, R. and Miracle, R. (1994). Long-term phytoplankton changes in a shallow hypertrophic lake, Albufera of Valencia Spain). Hydrobiol., 275/276, pp. 153-164 https://doi.org/10.1007/BF00026707
  26. Sheffer, M., Rinaldi, S., Grangnani, A., Mur, L. R., and Nes, E. H. (1997). On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecol., 78, pp. 272-282
  27. Smith, V. H., Willen, E., and Karlsson, B. (1987). Predicting the summer peak biomass of four species of blue-green algae (cyanphyta/cyanobacteria) in Swedish lakes. Wat. Res. Bull., 23, pp. 397-402 https://doi.org/10.1111/j.1752-1688.1987.tb00818.x
  28. Sommer, U. (1989). Nutrients status and nutrient competition of phytoplankton in a shallow, hypertrophic lake. Limnol. Oceanogr., 34, pp. 1161-1173
  29. Sommer, U., Gliwicz, Z. M., Lampert, W., and Duncan, A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol., 106, pp. 433-471
  30. Sterner, R. W. and Grover, J. P. (1998). Algal growth in warm temperate reservoirs: Kinetic examination of nitrogen, temperature, light, and other nutrients. Wat. Res., 32, pp. 3539-3548 https://doi.org/10.1016/S0043-1354(98)00165-1
  31. Tilman, D. (1982). Resource competition and community structure. Princeton, NJ, USA
  32. Trimbee, A. M. and Prepas, E. E. (1987). Evaluation of total phosphorus as a predictor of the relative biomass of bluereen algae with emphasis on Alberta lakes. Can. J. Fish. Aquat. Sci., 44, pp. 1337-1342 https://doi.org/10.1139/f87-158
  33. Van der Westhuizen, A. J. and Eloff, J. N. (1985). Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV-006). Planta, 163, pp. 55-59 https://doi.org/10.1007/BF00395897
  34. Watanabae, M. F. and Oishi, S. (1985). Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Applied and Environmental Microbiology, 49, pp. 1342-1344