SiO2-TiO2계 복합 나노섬유의 제조 및 광활성 연구

Fabrication and Photocatalytic Properties of SiO2-TiO2 Composite Nanofibers

  • Hyun, Dong Ho (Center for Research and Development, Doobon Inc.) ;
  • Lim, Tae-Ho (Center for Research and Development, Doobon Inc.) ;
  • Lee, Sung Wook (Center for Research and Development, Doobon Inc.)
  • 투고 : 2008.08.20
  • 심사 : 2008.09.19
  • 발행 : 2008.10.10

초록

전구체로서 알콕사이드[Tetraethyl orthosilicate (TEOS), Titanium (IV) isopropoxide (TiP)]를 사용하여 졸-겔 방법으로 전기방사에 적합한 졸을 제조한 후, $(1-x)SiO_2-(x)TiO_2$계 복합 나노섬유를 제조하였다. 제조된 광활성 무기나노섬유의 표면 및 구조적 특성은 X-선회절분석(XRD), 주사전자현미경(SEM), 투과전자현미경(TEM), 열중량분석 및 미분주사칼로리미터분석 (TGA-DSC), 적외선분광분석((FT-IR)을 통하여 확인하였다. $(1-x)SiO_2-(x)TiO_2$계에서 $TiO_2$ 양이 증가하면 전기방사된 복합섬유직경은 증가하였으며, 저온에서 안정한 아나타제 $TiO_2$ 결정에서 루타일로의 상전이는 $1000^{\circ}C$에서의 열처리 후에도 고루 분산되어 있는 $SiO_2$로 인해 $0.6SiO_2-0.4TiO_2$계까지는 아나타제상으로 존재하였다. $SiO_2-TiO_2$계 복합체 나노섬유의 광활성은 메틸렌블루 광분해 실험 및 UV-vis/DRS 분석을 통해 자외선 영역에서 나타남을 확인하였다.

$(1-x)SiO_2-(x)TiO_2$ composite fibers with various compositions of $TiO_2$ were prepared by electrospinning their sol-gel precursors of titanium (IV) iso-propoxide (TiP), and tetraethyl orthosilicate (TEOS). The surface morphology and structure of sintered composite fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), simultaneous thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) and Fourier transform infrared spectroscopy (FT-IR). As the content of $TiO_2$ in $(1-x)SiO_2-(x)TiO_2$ system was increased the average diameter of composite fibers was proportionally increased. Also, the transformation of $TiO_2$ from anatase to rutile form was inhibited by the highly dispersed $TiO_2$ around $SiO_2$ particles up to $0.6SiO_2-0.4TiO_2$ composite fibers even after calcination at $1000^{\circ}C$. The photocatalytic activity of $SiO_2-TiO_2$ composite fibers was examined for the methylene blue (MB) decomposition which was confirmed using UV-vis/DRS spectra. The experiments demonstrated that the MB in aqueous solution was successfully photodegraded using $SiO_2-TiO_2$ composite nanofibers under UV-visible light irradiation.

키워드

과제정보

연구 과제 주관 기관 : 환경부

참고문헌

  1. S.-S. Choi, S. G. Lee, C. W. Joo, S. S. Im, and S. H. Kim, J. Mater. Sci. Lett., 39, 1511 (2004) https://doi.org/10.1023/B:JMSC.0000013931.84760.b0
  2. S.-S. Choi, S. G. Lee, S. S. Im, S. H. Kim, and Y. L. Joo, J. Mater. Sci. Lett., 22, 891 (2003) https://doi.org/10.1023/A:1024475022937
  3. H. Guan, C. Shao, S. Wen, B. Chin, J. Gong, and X. Yang, Inorg. Chem. Commun., 6, 1302 (2003) https://doi.org/10.1016/j.inoche.2003.08.003
  4. P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, D. R. Lee, S. R. Kim, and M. A. Morris, Chem. Phys. Lett., 374, 79 (2003) https://doi.org/10.1016/S0009-2614(03)00702-4
  5. Y. Kotani, A. Matsuda, M. Tatsumisago, and T. Minami, J. Sol-Gel Sci. Tech., 19, 585 (2000) https://doi.org/10.1023/A:1008709210723
  6. P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, and D. R. Lee, Scripta Materialia, 49, 577 (2003) https://doi.org/10.1016/S1359-6462(03)00333-6
  7. B. Ding, H. Kim, C. Kim, M. Khil, and S. Park, Nanotechnology, 14, 532 (2003) https://doi.org/10.1088/0957-4484/14/5/309
  8. H. Dai, H. J. Gong, H. Kim, and D. Lee, Nanotechnology, 13, 674 (2002) https://doi.org/10.1088/0957-4484/13/5/327
  9. C. Shao, H. Kim, J. Gong, and D. Lee, Nanotechnology, 13, 635 (2002) https://doi.org/10.1088/0957-4484/13/5/319
  10. P. Viswanathamurthi, N. Bhattarai, C. K. Kim, H. Y. Kim, and D. R. Lee, Inorg. Chem. Commun., 7, 679 (2004) https://doi.org/10.1016/j.inoche.2004.03.013
  11. X.-C. Yuan, W. X. Yu, W. C. Cheong, and N. Q. Ngo, J. Phys. D: Appl. Phys., 35, L81 (2002) https://doi.org/10.1088/0022-3727/35/17/101
  12. D. Li, T. Herricks, and Y. Xia, Appl. Phys. Lett., 83, 4586 (2003) https://doi.org/10.1063/1.1630844
  13. H. Guan, C. Shao, Y. Liu, N. Yu, and X. Yang, Solid State Commun., 131, 107 (2004) https://doi.org/10.1016/j.ssc.2004.04.035
  14. Y. Wang and J. J. Santiago-Aviles, Nanotechnology, 15 32 (2004) https://doi.org/10.1088/0957-4484/15/1/006
  15. N. Dharmaraj, H. C. Park, C. K. Kim, H. Y. Kim, and D. R. Lee, Mater. Chem. Phys., 87, 5 (2004) https://doi.org/10.1016/j.matchemphys.2004.05.005
  16. S.-S. Choi, B. Chu, S. G. Lee, S. W. Lee, S. S. Im, S. H. Kim, and J. K. Park, J. Sol-Gel Sci. Tech., 30, 215 (2004) https://doi.org/10.1023/B:JSST.0000039530.09380.bc
  17. S. W. Lee, Y. U. Kim, S.-S. Choi, T. Y. Park, Y. L. Joo, and S. G. Lee, Mater. Lett., 61, 889 (2007) https://doi.org/10.1016/j.matlet.2006.06.020
  18. V. N. Parmon, Catalysis Today, 39 (1997)
  19. T. N. Obee and R. T. Brown, Environ. Sci. Tech., 29 (1995)
  20. G. A. Sorial, F. L. Smith, M. Suidan, P. Biswas, and R. C. Brenner, J. Haz. Mater., 53, 19 (1997) https://doi.org/10.1016/S0304-3894(96)01842-0
  21. H. Segawa, J. Fukuyoshi, K. Tanaka, and K. Yoshida, J. Mat. Sci. Lett., 22, 687 (2003) https://doi.org/10.1023/A:1023623228830
  22. T. Gunji, T. Kasahara, and Y. Abe, J. Sol-Gel Sci. Tech., 13, 957 (1998) https://doi.org/10.1023/A:1008643828073
  23. L. Dai, X. L. Chen, T. Xhou, and B. Q. Hu, J. Phys.: Condens. Matter., 14, L473 (2002) https://doi.org/10.1088/0953-8984/14/25/106
  24. M. Andrianainarivelo, R. Corriu, D. Leclercq, P. H. Mutin, and A. Vioux, J. Mater. Chem., 6, 1665 (1996) https://doi.org/10.1039/jm9960601665
  25. S. W. Lee and R. A. Condrate Sr, J. Mater. Sci., 23, 2951 (1988) https://doi.org/10.1007/BF00547474