Characterization of the Stresses in the Luting Cement Layer Affected by Location of the Occlusal Points and Loading Direction on a Full Veneer Crown

유한요소법을 이용한 전부주조관의 교합점 위치와 하중방향이 시멘트층 내 응력에 미치는 영향

  • Lee, Jung-Hoon (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Lee, Kyu-Bok (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Lee, Cheong-Hee (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Jo, Kwang-Hun (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
  • 이정훈 (경북대학교 치과대학 치과보철학교실) ;
  • 이규복 (경북대학교 치과대학 치과보철학교실) ;
  • 이청희 (경북대학교 치과대학 치과보철학교실) ;
  • 조광헌 (경북대학교 치과대학 치과보철학교실)
  • Received : 2008.09.11
  • Accepted : 2008.12.25
  • Published : 2008.12.30

Abstract

The objective of this study was to test effects of (1) where the occlusal contact points locate on a full veneer crown, and (2) which direction the contact forces are directed to, on the stresses within the luting cement layer that might suffer microfracture. A total of 27 finite element models were created for a mandibular first molar, combining 9 different locations of the occlusal contact points and 3 different loading directions. Type 3 gold alloy was used for crown material with a chamfer margin, and the luting cement material was glass ionomer cements in uniform thickness of $75{\mu}m$. Modeled crowns were loaded at 100 N. Different patterns in the cement stress were observed in the vicinity of the buccal and lingual margins. Whereas, the peak stress in buccal margin occurred approximately 0.5 mm away from the external surface, the highest stress in lingual margin was observed at approximately 1 mm. Significantly different distribution of stresses was recorded as a function either of the location of the occlusal contact points or of the loading direction. Higher stresses were produced by more obliquely acting load, and when the loaded point was in the vicinity of the cusp tip.

이 논문의 목적은 전부주조관에서 교합점의 위치와 교합력의 방향이 합착용 시멘트층 내의 응력에 미치는 영향에 대해서 알아보는 것이다. 하악 제 1대구치상에서 서로 다른 9 개의 교합점과 3가지 교합력 방향을 가진 27가지 조합의 유한요소 모델을 상정하였다. 금관의 소재는 제 3형 금합금이고, 변연의 형태는 chamfer이다. 합착용 시멘트로는 전 층에서 균일하게 $70{\mu}m$의 두께를 가지는 글라스 아이오노머 시멘트가 사용되었다. 금관에는 100N의 하중을 적용하였다. 협측과 설측 변연의 근접도에 따라서 시멘트층 내 응력은 다른 양상을 나타내었다. 협측은 변연으로부터 약 0.5 mm, 설측은 변연으로부터 약 1 mm 내측에서 최대 응력 값을 가졌다. 하중 방향이 치축에 대해 경사가 클수록, 하중점이 교두첨에 근접해 있을수록 더 큰 응력이 발생하였다.

Keywords

References

  1. Litonjua LA, Bush PJ, Andreana S, et al. Effects of occlusal load on cervical lesions. J Oral Rehabil 2004, 31:225-232 https://doi.org/10.1046/j.0305-182X.2003.01226.x
  2. Tanaka M, Naito T, Yokota M, Kohno M. Finite element analysis of the possible mechanism of cervical lesion formation by occlusal force. J Oral Rehabil 2003, 30:60-67 https://doi.org/10.1046/j.1365-2842.2003.00959.x
  3. Rees JS, Jagger DC. Abfraction lesions: myth or reality?. J Esthet Restor Dent 2003, 15:263-271 https://doi.org/10.1111/j.1708-8240.2003.tb00297.x
  4. Clark GT, Tsukiyama Y, Baba K, Watanabe T. Sixty-eight years of experimental occlusal interference studies: what have we learned?. J Prosthet Dent 1999, 82:704-713 https://doi.org/10.1016/S0022-3913(99)70012-0
  5. Bernhardt O, Gesch D, Look JO, et al. The influence of dynamic occlusal interferences on probing depth and attachment level: results of the Study of Health in Pomerania (SHIP). J Periodontol 2006, 77:506-516 https://doi.org/10.1902/jop.2006.050167
  6. Gher ME. Changing concepts. The effects of occlusion on periodontitis. Dent Clin North Am 1998, 42:285-299
  7. Hagag G, Yoshida K, Miura H. Occlusion, prosthodontic treatment, and temporomandibular disorders: a review. J Med Dent Sci 2000, 47:61-66
  8. Kamposiora P, Papavasilious G, Bayne SC, Felton DA. Finite element analysis estimates of cement microfracture under complete veneer crowns. J Prosthet Dent 1994, 71(5):435-441 https://doi.org/10.1016/0022-3913(94)90179-1
  9. Kamposiora P, Papavasiliou G, Bayne SC, Felton DA. Predictions of cement microfracture under crowns using 3D-FEA. J Prosthodont 2000, 9(4): 201-209 https://doi.org/10.1111/j.1532-849X.2000.00201.x
  10. Baldissara P, Comin G, Martone F, Scotti R. Comparative study of the marginal microleakage of six cements in fixed provisional crowns. J Prosthet Dent 1998, 80(4):417-422 https://doi.org/10.1016/S0022-3913(98)70005-8
  11. Yilmaz Y, Dalmis A, Gurbuz T, Simsek S. Retentive force and microleakage of stainless steel crowns cemented with three different luting agents. Dent Mater J 2004, 23(4):577-584 https://doi.org/10.4012/dmj.23.577
  12. Wiskott HWA, Krebs C, Scherrer SS, at al. Compressive and Tensile Zones in the Cement Interface of Full Crowns: A Technical Note on the Concept of Resistance. J Prosthodont 1999, 8(2):80-91 https://doi.org/10.1111/j.1532-849X.1999.tb00016.x
  13. Major MA Jr., Nelson SJ. Wheeler's Dental Anatomy, Physiology and Occlusion. 6th Edition, W.B. Saunders Co., 1984, p.254
  14. NISA II / DISPLAY III User's Manual, Mechanics Research Corporation (EMRC)
  15. Lee JY. Characterization of the stresses in the luting cement layer influenced by material properties of full veneer crown. MD thesis Department of Dentistry, Kyungpook Nat Univ 2006
  16. Tuntiprawon M, Wilson PR. The effect of cement thickness on the fracture strength of all-ceramic crowns. Aust Dent J 1995, 40(1):17-21 https://doi.org/10.1111/j.1834-7819.1995.tb05607.x
  17. Sugita T, Takakuda K, Miyairi H. Mechanical behavior of the cement layer of a cast crown - effect of the mechanical properties of casting alloy. Kokubyo Gakkai Zasshi 2000, 67(1):52-57 https://doi.org/10.5357/koubyou.67.52