In Vivo Quantitative Analysis of PKA Subunit Interaction and cAMP Level by Dual Color Fluorescence Cross Correlation Spectroscopy

  • Park, Hyungju (Neurobiology Laboratory, Department of Biological Sciences, College of Natural Sciences, Seoul National University) ;
  • Pack, Changi (Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University) ;
  • Kinjo, Masataka (Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University) ;
  • Kaang, Bong-Kiun (Neurobiology Laboratory, Department of Biological Sciences, College of Natural Sciences, Seoul National University)
  • Received : 2008.01.08
  • Accepted : 2008.02.11
  • Published : 2008.07.31

Abstract

We employed dual color Fluorescence Cross Correlation Spectroscopy (FCCS) to measure the interaction between PKA regulatory (RII) and catalytic subunits (CAT) in living cells. Elevation of intracellular cAMP with forskolin decreased the cross-correlation amplitude between RFP-fused RII (RII -mRFP) and GFP-fused CAT (CAT-EGFP) by 50%, indicating that cAMP elevation leads to dissociation of RII-CAT complexes. Moreover, diffusion coefficient analysis showed that the diffusion rate of CAT-EGFP was significantly increased, suggesting that the decreased RII-CAT association caused by cAMP generated free CAT subunits. Our study demonstrates that in vivo FCCS measurements and their quantitative analysis permit one not only to directly quantify protein-protein interactions but also to estimate changes in the intracellular cAMP concentration.

Keywords

Acknowledgement

Supported by : JSPS

References

  1. Almholt, K., Tullin, S., Skyggebjerg, O., Scudder, K., Thastrup, O., and Terry, R. (2004). Changes in intracellular cAMP reported by a Redistribution assay using a cAMP-dependent protein kinasegreen fluorescent protein chimera. Cell Signal. 16, 907-920 https://doi.org/10.1016/j.cellsig.2004.01.006
  2. Arnsten, A.F., Ramos, B.P., Birnbaum, S.G., and Taylor, J.R. (2005). Protein kinase A as a therapeutic target for memory disorders: rationale and challenges. Trends Mol. Med. 11, 121-128 https://doi.org/10.1016/j.molmed.2005.01.006
  3. Bacia, K., Kim, S.A., and Schwille, P. (2006). Fluorescence crosscorrelation spectroscopy in living cells. Nat. Methods 3, 83-89 https://doi.org/10.1038/nmeth822
  4. Brock, R., Vamosi, G., Vereb, G., and Jovin, T.M. (1999). Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation microscopy. Proc. Natl. Acad. Sci. USA 96, 10123-10128
  5. Byrne, J.H., and Kandel, E.R. (1996). Presynaptic facilitation revisited: state and time dependence. J. Neurosci. 16, 425-435 https://doi.org/10.1523/JNEUROSCI.16-02-00425.1996
  6. Chen, H., Puhl, H.L., 3rd, Koushik, S.V., Vogel, S.S., and Ikeda, S.R. (2006). Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys. J.91, L39-41 https://doi.org/10.1529/biophysj.106.088773
  7. Colledge, M., and Scott, J.D. (1999). AKAPs: from structure to function. Trends Cell Biol. 9, 216-221 https://doi.org/10.1016/S0962-8924(99)01558-5
  8. DiPilato, L.M., Cheng, X., and Zhang, J. (2004). Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc. Natl. Acad. Sci. USA 101, 16513-16518
  9. Gu, Y., Di, W.L., Kelsell, D.P., and Zicha, D. (2004). Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing. J. Microsc.215, 162-173 https://doi.org/10.1111/j.0022-2720.2004.01365.x
  10. Heinze, K.G., Rarbach, M., Jahnz, M., and Schwille, P. (2002). Two-photon fluorescence coincidence analysis: rapid measurements of enzyme kinetics. Biophys. J. 83, 1671-1681 https://doi.org/10.1016/S0006-3495(02)73935-0
  11. Hoppe, A., Christensen, K., and Swanson, J.A. (2002). Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys. J. 83, 3652-3664 https://doi.org/10.1016/S0006-3495(02)75365-4
  12. Kim, S.A., Heinze, K.G., Bacia, K., Waxham, M.N., and Schwille, P. (2005). Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophys. J. 88, 4319-4336 https://doi.org/10.1529/biophysj.104.055319
  13. Kim, S.A., and Schwille, P. (2003). Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience. Curr. Opin. Neurobiol. 13, 583-590 https://doi.org/10.1016/j.conb.2003.09.002
  14. Kogure, T., Karasawa, S., Araki, T., Saito, K., Kinjo, M., and Miyawaki, A. (2006). A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat. Biotechnol. 24, 577- 581 https://doi.org/10.1038/nbt1207
  15. Mikuni, S., Tamura, M., and Kinjo, M. (2007). Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy. FEBS Lett. 581, 389-393 https://doi.org/10.1016/j.febslet.2006.12.038
  16. Pack, C., Saito, K., Tamura, M., and Kinjo, M. (2006). Microenvironment and effect of energy depletion in the nucleus analyzed by mobility of multiple oligomeric EGFPs. Biophys. J. 91, 3921- 3936 https://doi.org/10.1529/biophysj.105.079467
  17. Park, H., Lee, J.A., Lee, C., Kim, M.J., Chang, D.J., Kim, H., Lee, S.H., Lee, Y.S., and Kaang, B.K. (2005). An Aplysia type 4 phosphodiesterase homolog localizes at the presynaptic terminals of Aplysia neuron and regulates synaptic facilitation. J. Neurosci.25, 9037-9045 https://doi.org/10.1523/JNEUROSCI.1989-05.2005
  18. Ponsioen, B., Zhao, J., Riedl, J., Zwartkruis, F., van der Krogt, G., Zaccolo, M., Moolenaar, W.H., Bos, J. L., and Jalink, K. (2004). Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep. 5, 1176-1180 https://doi.org/10.1038/sj.embor.7400290
  19. Saito, K., Wada, I., Tamura, M., and Kinjo, M. (2004). Direct detection of caspase-3 activation in single live cells by crosscorrelation analysis. Biochem. Biophys. Res. Commun. 324, 849-854 https://doi.org/10.1016/j.bbrc.2004.09.126
  20. Takahashi, Y., Sawada, R., Ishibashi, K., Mikuni, S., and Kinjo, M. (2005). Analysis of cellular functions by multipoint fluorescence correlation spectroscopy. Curr. Pharm. Biotechnol. 6, 159-165 https://doi.org/10.2174/1389201053642330
  21. van der Wal, J., Habets, R., Varnai, P., Balla, T., and Jalink, K. (2001). Monitoring agonist-induced phospholipase C activation in live cells by fluorescence resonance energy transfer. J. Biol. Chem 276, 15337-15344 https://doi.org/10.1074/jbc.M007194200
  22. Wallrabe, H., Chen, Y., Periasamy, A., and Barroso, M. (2006). Issues in confocal microscopy for quantitative FRET analysis. Microsc. Res. Tech.69, 196-206 https://doi.org/10.1002/jemt.20281
  23. Xu, X., Brzostowski, J.A., and Jin, T. (2006). Using quantitative fluorescence microscopy and FRET imaging to measure spatiotemporal signaling events in single living cells. Methods Mol. Biol.346, 281-296
  24. Zaccolo, M., and Pozzan, T. (2002). Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295, 1711-1715 https://doi.org/10.1126/science.1069982
  25. Zaccolo, M., Cesetti, T., Di Benedetto, G., Mongillo, M., Lissandron, V., Terrin, A., and Zamparo, I. (2005). Imaging the cAMPdependent signal transduction pathway. Biochem. Soc. Trans. 33, 1323-1326 https://doi.org/10.1042/BST20051323
  26. Zheng, J. (2006). Spectroscopy-based quantitative fluorescence resonance energy transfer analysis. Methods Mol. Biol. 337, 65- 77
  27. Zhuo, M. (2007). A synaptic model for pain: long-term potentiation in the anterior cingulate cortex. Mol. Cells 23, 259-271
  28. Zippin, J.H., Farrell, J., Huron, D., Kamenetsky, M., Hess, K.C., Fischman, D.A., Levin, L.R., and Buck, J. (2004). Bicarbonateresponsive "soluble" adenylyl cyclase defines a nuclear cAMP microdomain. J. Cell Biol. 164, 527-534 https://doi.org/10.1083/jcb.200311119