Derivation of Embryonic Germ Cells from Post Migratory Primordial Germ Cells, and Methylation Analysis of Their Imprinted Genes by Bisulfite Genomic Sequencing

  • Shim, Sang Woo (Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University) ;
  • Han, Dong Wook (Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University) ;
  • Yang, Ji Hoon (Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University) ;
  • Lee, Bo Yeon (Infertility Clinic, Department of Obstetrics and Gynecology, Kyung-Hee Medical Center) ;
  • Kim, Seung Bo (Infertility Clinic, Department of Obstetrics and Gynecology, Kyung-Hee Medical Center) ;
  • Shim, Hosup (Department of Physiology, School of Medicine, Dankook University) ;
  • Lee, Hoon Taek (Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University)
  • Received : 2007.07.16
  • Accepted : 2008.01.01
  • Published : 2008.05.31

Abstract

The embryonic germ cell (EGCs) of mice is a kind of pluripotent stem cell that can be generated from pre- and post-migratory primordial germ cells (PGCs). Most previous studies on DNA methylation of EGCs were restricted to 12.5 days post coitum (dpc). This study was designed to establish and characterize murine EGC lines from migrated PGCs as late as 13.5 dpc and to estimate the degrees of methylation of their imprinted genes as well as of the non-imprinted locus, Oct4, using an accurate and quantitative method of measurement. We established five independent EGC lines from post migratory PGCs of 11.5-13.5 dpc from C57BL/6 ${\times}$ DBA/2 F1 hybrid mouse fetuses. All the EGCs exhibited the typical features of pluripotent cells including hypomethylation of the Oct4 regulatory region. We examined the methylation status of three imprinted genes; Igf2, Igf2r and H19 in the five EGC lines using bisulfite genomic sequencing analysis. Igf2r was almost unmethylated in all the EGC lines irrespective of the their sex and stage of isolation; Igf2 and H19 were more methylated than Igf2r, especially in male EGCs. Moreover, EGCs derived at 13.5 dpc exhibited higher levels of DNA methylation than those from earlier stages. These results suggest that in vitro derived EGCs acquire different epigenotypes from their parental in vivo migratory PGCs, and that sex-specific de novo methylation occurs in the Igf2 and H19 genes of EGCs.

Keywords

References

  1. Abe, K., Hashiyama, M., Macgregor, G., and Yamamura, K. (1996). Purification of primordial germ cells from TNAPbeta- geo mouse embryos using FACS-gal. Dev. Biol. 180, 468-472 https://doi.org/10.1006/dbio.1996.0320
  2. Bartolomei, M.S., Webber, A.L., Brunkow, M.E., and Tilghman, S.M. (1993). Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7, 1663-1673 https://doi.org/10.1101/gad.7.9.1663
  3. Buehr, M., and McLaren, A. (1993). Isolation and culture of primordial germ cells. Methods Enzymol. 225, 58-77 https://doi.org/10.1016/0076-6879(93)25007-O
  4. Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643-655 https://doi.org/10.1016/S0092-8674(03)00392-1
  5. Chiquoine, A.D. (1954). The identification, origin, and migration of the primordial germ cells in the mouse embryo. Anat. Rec. 118, 135-146 https://doi.org/10.1002/ar.1091180202
  6. De Felici, M., and McLaren, A. (1982). Isolation of mouse primordial germ cells. Exp. Cell Res. 142, 476-482 https://doi.org/10.1016/0014-4827(82)90393-7
  7. De Felici, M., and Pesce, M. (1995). Immunoaffinity purification of migratory mouse primordial germ cells. Exp. Cell Res. 216, 277-279 https://doi.org/10.1006/excr.1995.1034
  8. Do, J., Han, D.W., Gentile, L., Sobek-Klocke, I., Stehling, M., Lee, H.T., and Scholer, H.R. (2007). Erasure of cellular memory by fusion with pluripotent cells. Stem Cells 25, 1013-1020 https://doi.org/10.1634/stemcells.2006-0691
  9. Dolci, S., Williams, D.E., Ernst, M.K., Resnick, J.L., Brannan, C.I., Lock, L.F., Lyman, S.D., Boswell, H.S., and Donovan, P.J. (1991). Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature 352, 809-811 https://doi.org/10.1038/352809a0
  10. Durcova-Hills, G., Tokunaga, T., Kurosaka, S., Yamaguchi, M., Takahashi, S., and Imai, H. (1999). Immunomagnetic isolation of primordial germ cells and the establishment of embryonic germ cell lines in the mouse. Cloning 1, 217-224 https://doi.org/10.1089/15204559950019852
  11. Durcova-Hills, G., Ainscough, J., and McLaren, A. (2001). Pluripotential stem cells derived from migrating primordial germ cells. Differentiation 68, 220-226 https://doi.org/10.1046/j.1432-0436.2001.680409.x
  12. Durcova-Hills, G., Burgoyne, P., and McLaren, A. (2004). Analysis of sex differences in EGC imprinting. Dev. Biol. 268, 105-110 https://doi.org/10.1016/j.ydbio.2003.12.018
  13. Ferguson-Smith, A.C., Sasaki, H., Cattanach, B.M., and Surani, M.A. (1993). Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362, 751-755 https://doi.org/10.1038/362751a0
  14. Forne, T., Oswald, J., Dean, W., Saam, J.R., Bailleul, B., Dandolo, L., Tilghman, S.M., Walter, J., and Reik, W. (1997). Loss of the maternal H19 gene induces changes in Igf2 methylation in both cis and trans. Proc. Natl. Acad. Sci. USA 94, 10243-10248
  15. Frommer, M., McDonald, L.E., Millar, D.S., Collis, C.M., Watt, F., Grigg, G.W., Molloy, P.L., and Paul, C.L. (1992). A genomic sequencing protocol that yields a positive display of 5- methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827-1831
  16. Ginsburg, M., Snow, M.H., and McLaren, A. (1990). Primordial germ cells in the mouse embryo during gastrulation. Development 110, 521-528
  17. Godin, I., Deed, R., Cooke, J., Zsebo, K., Dexter, M., and Wylie, C.C. (1991). Effects of the steel gene product on mouse primordial germ cells in culture. Nature 352, 807-809 https://doi.org/10.1038/352807a0
  18. Grigg, G., and Clark, S. (1994). Sequencing 5-methylcytosine residues in genomic DNA. Bioessays 16, 431-436 https://doi.org/10.1002/bies.950160612
  19. Hajkova, P., el-Maarri, O., Engemann, S., Oswald, J., Olek, A., and Walter, J. (2002a). DNA-methylation analysis by the bisulfite- assisted genomic sequencing method. Methods Mol. Biol. 200, 143-154
  20. Hajkova, P., Erhardt, S., Lane, N., Haaf, T., El-Maarri, O., Reik, W., Walter, J., and Surani, M.A. (2002b). Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117, 15-23 https://doi.org/10.1016/S0925-4773(02)00181-8
  21. Hogan, B., Beddington, R., Costantini, F., and Lacy, E. (1994). Isolating germ cells from the genital ridge; in Manipulating the Mouse Embryo: A Labolatory Manual, 2nd ed., pp. 166- 168, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  22. Kato, Y., Rideout, W.M., 3rd, Hilton, K., Barton, S.C., Tsunoda, Y., and Surani, M.A. (1999). Developmental potential of mouse primordial germ cells. Development 126, 1823-1832
  23. Knowles, B.B., Aden, D.P., and Solter, D. (1978). Monoclonal antibody detecting a stage-specific embryonic antigen (SSEA-1) on preimplantation mouse embryos and teratocarcinoma cells. Curr. Top. Microbiol. Immunol. 81, 51-53
  24. Labosky, P.A., Barlow, D.P., and Hogan, B.L. (1994). Embryonic germ cell lines and their derivation from mouse primordial germ cells. Ciba Found. Symp. 182, 157-168; discussion 168-178
  25. Labosky, P.A., Barlow, D.P., and Hogan, B.L. (1994). Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin- like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 120, 3197-3204
  26. Lawson, K.A., and Hage, W.J. (1994). Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found. Symp. 182, 68-84; discussion 84-91
  27. Lee, J., Inoue, K., Ono, R., Ogonuki, N., Kohda, T., Kaneko- Ishino, T., Ogura, A., and Ishino, F. (2002). Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 129, 1807-1817
  28. Matsui, Y., Toksoz, D., Nishikawa, S., Nishikawa, S., Williams, D., Zsebo, K., and Hogan, B.L. (1991). Effect of Steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature 353, 750-752 https://doi.org/10.1038/353750a0
  29. Matsui, Y., Zsebo, K., and Hogan, B.L. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841-847 https://doi.org/10.1016/0092-8674(92)90317-6
  30. Mayanagi, T., Kurosawa, R., Ohnuma, K., Ueyama, A., Ito, K., and Takahashi, J. (2003). Purification of mouse primordial germ cells by Nycodenz. Reproduction 125, 667-675 https://doi.org/10.1530/rep.0.1250667
  31. McCarrey, J.R., Hsu, K.C., Eddy, E.M., Klevecz, R.R., and Bolen, J.L. (1987). Isolation of viable mouse primordial germ cells by antibody-directed flow sorting. J. Exp. Zool. 242, 107-111 https://doi.org/10.1002/jez.1402420116
  32. McLaren, A., and Southee, D. (1997). Entry of mouse embryonic germ cells into meiosis. Dev. Biol. 187, 107-113 https://doi.org/10.1006/dbio.1997.8584
  33. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe- Nebenius, D., Chambers, I., Scholer, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379-391 https://doi.org/10.1016/S0092-8674(00)81769-9
  34. Olek, A., Oswald, J., and Walter, J. (1996). A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. 24, 5064-5066 https://doi.org/10.1093/nar/24.24.5064
  35. Pesce, M., and De Felici, M. (1995). Purification of mouse primordial germ cells by MiniMACS magnetic separation system. Dev. Biol. 170, 722-725 https://doi.org/10.1006/dbio.1995.1250
  36. Resnick, J.L., Bixler, L.S., Cheng, L., and Donovan, P.J. (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550-551 https://doi.org/10.1038/359550a0
  37. Rudnicki, M.A. (1987). Cell culture methods and introduction of differentiation embryonal carcinoma cell lines; in Teratocarcinomas and Embryonic Stem Cells, a Practical Approach. E. J. Robertson, ed. pp. 19-49 (Oxford: IRL Press)
  38. Solter, D., and Knowles, B.B. (1978). Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA 75, 5565-5569
  39. Stewart, C.L., Gadi, I., and Bhatt, H. (1994). Stem cells from primordial germ cells can reenter the germ line. Dev. Biol. 161, 626-628 https://doi.org/10.1006/dbio.1994.1058
  40. Stoger, R., Kubicka, P., Liu, C.G., Kafri, T., Razin, A., Cedar, H., and Barlow, D.P. (1993). Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61-71 https://doi.org/10.1016/0092-8674(93)90160-R
  41. Tada, T., Tada, M., Hilton, K., Barton, S.C., Sado, T., Takagi, N., and Surani, M.A. (1998). Epigenotype switching of imprintable loci in embryonic germ cells. Dev. Genes Evol. 207, 551-561 https://doi.org/10.1007/s004270050146
  42. Tam, P.P., and Snow, M.H. (1981). Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J. Embryol. Exp. Morphol. 64, 133-147
  43. Ueda, T., Abe, K., Miura, A., Yuzuriha, M., Zubair, M., Noguchi, M., Niwa, K., Kawase, Y., Kono, T., Matsuda, Y., et al. (2000). The paternal methylation imprint of the mouse H19 locus is acquired in the gonocyte stage during foetal testis development. Genes Cells 5, 649-659 https://doi.org/10.1046/j.1365-2443.2000.00351.x
  44. Yamazaki, Y., Mann, M.R., Lee, S.S., Marh, J., McCarrey, J.R., Yanagimachi, R., and Bartolomei, M.S. (2003). Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc. Natl. Acad. Sci. USA 100, 12207-12212