Optimum Concentration of Alizarin Complexone (ALC) for Otolith Marking of Pacific Cod Gadus macrocephalus

대구 Gadus macrocephalus 이석 표지를 위한 Alizarin Complexone의 최적 농도

  • Kim, Tae Jin (Division of Marine Bioscience, The Institute of Marine Industry, Gyeongsang National University) ;
  • Lee, So Gwang (Gyeongsangnam-do Fisheries Resources and Research Institute) ;
  • Gwak, Woo Seok (Division of Marine Bioscience, The Institute of Marine Industry, Gyeongsang National University)
  • 김태진 (국립 경상대학교 해양생명과학과 해양산업연구소) ;
  • 이소광 (경상남도수산자원연구소) ;
  • 곽우석 (국립 경상대학교 해양생명과학과 해양산업연구소)
  • Received : 2008.09.02
  • Accepted : 2008.12.06
  • Published : 2008.12.31

Abstract

Optimum concentration of alizarine complexone (ALC) for staining of otoliths for Pacific cod was determined by examination of stained quality, growth and survival rates. Small juveniles ($34.1{\pm}1.8mm$ TL, $mean{\pm}SD$) were immersed in four different concentrations (20, 40, 60, 80 mg/L) and large ones ($73.8{\pm}1.2mm$ TL, $mean{\pm}SD$) in five different concentrations (1, 5, 10, 20, 40 mg/L) of ALC for 24 hrs. The fish were then reared and observed for 14 days. The stained quality of otoliths was evaluated by dividing them into four grades by the presence of fluorescent stains on the otoliths under G-excited UV light. The small juveniles stained with the different ALC concentrations had 100% staining success, and their growth rate and body weight did not differ significantly between treatments. Optimal ALC concentration for the smaller juveniles was 20 mg/L in the present experiment. On the other hand, distinct fluorescent rings were confirmed on otoliths of larger juveniles in the 10 mg/L treatment with high survival rate. These results suggest that ALC staining at concentrations of 10 mg/L with larger juveniles will be helpful for release-recapture experiments for stock enhancement of Pacific cod.

본 연구는 방류 대상종인 대구의 이석에 ALC 표지 가능 여부, 표지 적정농도 및 순간성장률을 비교 분석하여 수산 종묘 표지방류 연구에 대한 기초자료를 제공하고자 수행하였다. 전장이 작은 대구 치어($34.1{\pm}1.8mm$, $mean{\pm}SD$)의 경우 ALC 농도를 0, 20, 40, 60, 80 mg/L로, 전장이 큰 치어($73.8{\pm}1.2mm$, $mean{\pm}SD$)의 경우 ALC 농도 1, 5, 10, 20, 40 mg/L로 각각 5개 실험구를 설정하여 24시간 침적한 후 14일간 사육하면서 관찰하였다. 표지 이석을 UV light 현미경(G필터)으로 관찰한 결과 이석 표면에는 붉은색 계통의 원형띠를 형성하며 ALC가 염색 되었다. 작은 크기 치어는 모든 실험구에서 이석에 ALC가 염색 되었고, 최저 농도인 20 mg/L에서 조사한 10개체 모두 '선명함' 이상으로 판정되었으며, 각각의 실험구에 대한 실험 전후 체중과 성장률의 차이는 유의하지 않았으나 사망률은 농도가 높아지며 높아졌다. 크기가 큰 대구 치어는 10 mg/L 이상의 농도에서 1개체를 제외한 모든 개체에서 염색 정도가 '선명함' 이상으로 판정되었으며, 실험기간 동안 모든 개체가 생존하였다. 대구 방류 효과를 추적하기 위한 이석의 ALC 염색에서는 크기가 큰 치어를 대상으로 10 mg/L의 농도가 적정농도로 추정되었다.

Keywords

Acknowledgement

Supported by : (구)해양수산부

References

  1. 곽우석. 2007. 대구 우량종묘 대량 생산기술 확립 및 종묘방류 기술개발 효과조사. 해양수산부보고서, 54pp.
  2. 거제해양사무소. 2008. 대구방류보고서, 18pp.
  3. 경상남도. 2008. 해양수산현황, 361pp.
  4. 김동우. 2002. 황복, Takifugu obscurus의 초기성장과 이석의 미세구조. 인하대학교 석사학위청구논문, 47pp.
  5. 해양수산부. 2007. 해양수산통계연보, 334pp.
  6. Blom, G., J.T. Nordeide, T. Svasand and A. Borge. 1994. Application of two fluorescent chemicals, alizarin complexone and alizarin red S, to mark otoliths of Atlantic cod, Gadus morhua L. Aqua. Fish. Manage., 25: 229-243
  7. Brennan, N.P., K.M. Leber, H.L. Blankenship, J.M. Ransier and J.R. DeBruler. 2005. An evaluation of coded wire and elastomer tag performance in juvenile common snook under field and laboratory conditions. N. Am. J. Fish. Manage., 25: 437-445 https://doi.org/10.1577/M04-003.1
  8. Campana, S.R. and J.D. Neilson. 1982. Daily growth increments in otoliths of starry flounder, Platichthys stellatus and the influence of some environmental variables in their production. Can. J. Fish. Aqua. Sci., 39: 937-942 https://doi.org/10.1139/f82-127
  9. Hiborn, R. 2004. Population management in stock enhancement and sea ranching. In: Leber, K.M., S. Kitada, H.L. Blankenship and T. Svasand (eds.), Stock Enhancement and Sea Ranching. Blackwell Publishing, Oxford, U.K., pp. 201- 209
  10. Hoff, G.R., D.J. Logan and D.F. Markle. 1997. Otolith morphology and increment validation in young Lost River and shortnose suckers. Trans. Am. Fish. Soc., 126: 488-494 https://doi.org/10.1577/1548-8659(1997)126<0488:NOMAIV>2.3.CO;2
  11. Iglesias, J. and G. Rodriguez-Ojea. 1997. The use of alizarin complexone for immersion marking of the otoliths of embryos and larvae of the turbot, Scophthalmus maximus (L.): dosage and treatment time. Fish. Mange. Ecol., 4: 405-417 https://doi.org/10.1046/j.1365-2400.1997.00052.x
  12. Itamoto, K. 2000. Marking of otolith by alizarine complexone in Salmon fry, Oncorhynchus. Bull. Yama. Pre. FIsh. Exp. St., 1: 15-16
  13. Jenkins, W.E., M.R. Denson, C.B. Bridgham, M.R. Collins and T.I. Smith. 2004. Retention of oxytetracycline-induced marks on sagittae of red drum. N. Am. J. Fish. Manage., 22: 590- 594 https://doi.org/10.1577/1548-8675(2002)022<0590:ROOIMO>2.0.CO;2
  14. Katakura, S., M. Ohta, M. Jin and Y. Sakurai. 2003. Otolith-marking experiments of juvenile walleye pollock Theragra chalcogramma using oxytetracycline, alizarin complexone, and alizarin red S. Jap. Aqu. Soc., 51: 327-336
  15. Kobayashi, S., R. Yuki, T. Furui and T. Kosugiyama. 1964. Calcification in fish and shell-fish-I. Tetracycline labelling patterns on scale, centrum and otolith in young goldfish. Bull. Jap. Soc. Sci. Fish., 30: 6-13 https://doi.org/10.2331/suisan.30.6
  16. Kudou, T. 2001. Growth and migration routes of otoliths-tagged young salmon. Fish and Water, 37: 31-40
  17. Kuwada, H. and K. Tsukamoto. 1987. Otolith-tagging of the red sea bream larvae with alizarine complexone-I. Optimum concentration and mark retention. Saibai-gyogyo Gijutsu-kaihatsu Kenkyu, 16: 93-104. (in Japanese)
  18. Lagardere, F.K., K. Thibaudeau and M.L. Begout Anras. 2002. Feasibility of otolith marking in large juvenile turbot, Scophthalus maximus using alizarin red S solutions. ICES. J. Mar. Sci., 57: 1175-1181 https://doi.org/10.1006/jmsc.2000.0804
  19. Leber, K.M. 1999. Rationale for an experimental approach to stock enhancement. In: Stickney, R.R. and J.P. McVey (eds.), Stock Enchancement and Sea Ranching. Blackwell Publishing, Oxford, U.K., pp. 63-75
  20. McFarlane, G.A. and R.J. Beamish. 1987. Selection of dosages of oxytetracycline for age validation studies. Can. J. Fish. Aqua. Sci., 44: 905-909 https://doi.org/10.1139/f87-108
  21. Matsumura, Y. 2005. Otolith marking for eggs, larvae and juveniles of ocellate puffer, Takifugu rubripes by alizarin complexone and tetracycline. Nippon Suisan Gakkaishi, 71: 307-317 https://doi.org/10.2331/suisan.71.307
  22. Munro, J.L. and J.D. Bell. 1997. Enhancement of marine fisheries resources. Rev. Fish. Sci., 5: 185-222 https://doi.org/10.1080/10641269709388597
  23. Nakagawa, M., H. Okouchi and K. Hattori. 2007. Otolith-marking experiments of juvenile black rockfish, Sebastes schlegeli using alizarin complexone. Aqua. Sci., 55: 253-257
  24. Perez-Enriquez, R. and N. Taniguchi. 1999. Genetic structure of red sea bream population off Japan and southwest Pacific, using microsatellite DNA markers. Fish. Sci., 65: 23-30 https://doi.org/10.2331/fishsci.65.23
  25. Prentice, E.F., T.A. Flagg and C.S. McCutcheon. 1990. Feasibility of using implantable passive integrated transponder (PIT) tags in salmonids. In: Parker, N.C., A.E. Giorgi, R.C. Heidinger, D.B. Jester, E.D. Prince and G.A. Winans (eds.), Fish Marking Techniques. American Fisheries Society Symposium 7, Bethesda, M.D., pp. 317-322
  26. Schmitt, P.D. 1984. Marking growth increments in otoliths of larval and juvenile fish by immersion in tetracycline to examine the rate of increment formation. Fish. Bull., 82: 237-242
  27. Stoettrup, J.G., C.R. Sparrevohn, J. Modiun and J.K. Lehmann. 2002. The use of releases of reared fish to enhance natural population: a case study on turbot, Psetta maxima (Linne, 1758). Fish. Res., 59(1-2): 161-180 https://doi.org/10.1016/S0165-7836(01)00413-1
  28. Taylor, M.D., D.S. Fielder and I.M. Suthers. 2005. Batch marking of otoliths and fin spines to assess the stock enhancement of Argyrosomus japonicus. J. Fish Biol., 66: 1149-1162 https://doi.org/10.1111/j.0022-1112.2005.00678.x
  29. Tomoda, T. and H. Kuwada. 2006. Otolith marking by dilution of alizarin complexone solution through pH adjustment for juvenile Japanese sandfish, Arctoscopus japonicus. Nippon Suisan Gakkaishi, 72: 76-78 https://doi.org/10.2331/suisan.72.76
  30. Tsukamoto, K. 1985. Mass-marking of ayu eggs and larvae by tetracycline- tagging of otoliths. Bull Jap. Soc. Sci. Fish., 51: 903-911 https://doi.org/10.2331/suisan.51.903
  31. Tsukamoto, K. 1987. Otoliths marking method for fish eggs, larvae and juveniles. Aquabiol., 9: 103-105
  32. Tsukamoto, K. 1988. Otolith tagging of ayu embryo with fluorescent substances. Nippon Suisan Gakkaishi, 54: 1289-1295 https://doi.org/10.2331/suisan.54.1289
  33. Tsukamoto, K., H. Kuwada, J. Hirokawa, M. Oya, S. Sekiya, H. Fujimoto and K. Imaizumi. 1989. Size-dependent mortality of red sea bream, Pagrus major, juveniles released with fluorescent otolith-tags in News Bay, Japan. J. Fish. Biol., 35: 59-69 https://doi.org/10.1111/j.1095-8649.1989.tb03393.x
  34. Uchida, K. 1936. On the Pacific cod of adjacent waters to Korea. Chousen no Suisan, 130: 24-39
  35. Ueno, Y. M. Nagata, H. Kawamura, K. Suzuki, H. Mayama, J. Seki, S. Urawa, T. Ariyoshi and K. Nakamura. 1998. The origin and migration route of young Oncorhynchus keta in Okhotsk during autumn. Salmon Report Series, 46: 64-92
  36. Yamashita, Y., S. Nagahora, H. Yamada and D. Kitagawa. 1994. Effects of release size on survival and growth of Japanese flounder, Paralichthys olivaceus in coastal waters off Iwate Prefecture, northeastern Japan. Mar. Ecol. Prog. Ser., 105: 269-276 https://doi.org/10.3354/meps105269