DOI QR코드

DOI QR Code

Effect of Chito-oligosaccharide Supplementation on Immunity in Broiler Chickens

  • Deng, Xingzhao (China Agricultural University, Ministry of Agriculture Feed Industry Centre) ;
  • Li, Xiaojing (China Agricultural University, Ministry of Agriculture Feed Industry Centre) ;
  • Liu, Pai (China Agricultural University, Ministry of Agriculture Feed Industry Centre) ;
  • Yuan, Shulin (Food engineering department of Jiangsu food science college) ;
  • Zang, Jianjun (China Agricultural University, Ministry of Agriculture Feed Industry Centre) ;
  • Li, Songyu (China Agricultural University, Ministry of Agriculture Feed Industry Centre) ;
  • Piao, Xiangshu (China Agricultural University, Ministry of Agriculture Feed Industry Centre)
  • Received : 2008.01.22
  • Accepted : 2008.05.28
  • Published : 2008.11.01

Abstract

This study was conducted to determine the effects of dietary supplementation of either 100 mg/kg chito-oligosaccharide (COS) or chlortetracycline (CTC) with corn-soybean-fish meal on immunity in broiler chickens. A total of 147 one-day old male broiler chicks were randomly allocated to 3 treatments with 7 replicate pens per treatment and 7 birds per pen. The experimental diets consisted of a control diet based on corn, soybean and fish meal without COS and any antibiotic supplement and similar diets supplemented with either CTC (80 mg/kg from d 1 to 21 and 50 mg/kg from d 22 to 42) or COS (100 mg/kg from d 1 to 42). During the entire experimental period, all birds had ad libitum access to diets and water. The main immune organ indices, T-lymphocyte proliferation, serum cytokine concentrations, serum NO level and serum iNOS activity were measured on d 21 and d 42. On d 21, broilers fed 100 mg/kg COS had improved (p<0.01) indices of spleen, thymus, and bursa of Fabricius compared with the control and CTC birds. Birds receiving 100 mg/kg COS had higher (p<0.05) serum concentrations of $IL-1{\beta}$, IL-6, IgM, NO and iNOS than birds on the control treatment. Serum $Ca^{2+}$ level of birds fed 100 mg/kg COS tended to be higher (p = 0.049) than in birds fed CTC. On d 42, the birds fed 100 mg/kg COS had higher (p<0.05) concentrations of TNF-${\alpha}$ and IgM in serum than birds in both the CTC and control treatments. Birds fed 100 mg/kg COS had a higher concentration of IFN-$\gamma$ than the control group. In conclusion, dietary supplementation of COS appeared to improve the immunity of broilers by promoting the weight of the main immune organs, increasing IgM secretion, stimulating microphages to release $TNF-{\alpha}$, $IL-1{\beta}$, IL-6 and IFN-$\gamma$, and activating iNOS to induce NO.

Keywords

References

  1. Chae, S. Y., M. Jang and J. Nah. 2005. Influence of molecular weight on oral absorption of water soluble chitosans. J. Control. Release 102:383-394. https://doi.org/10.1016/j.jconrel.2004.10.012
  2. Chen, H., W. G. Hong and X. M. Zang. 2006. Effect of oligochitosan on production performance and immune function of quail. J. Economic Animal. 10:18-21 (In Chinese with English Abstract).
  3. Choi, H. J., J. Ahn, N. C. Kim and H. S. Kwak. 2006. The effects of microencapsulated chitooligosaccharide on physical and sensory properties of the milk. Asian-Aust. J. Anim. Sci. 19:1347-1353. https://doi.org/10.5713/ajas.2006.1347
  4. Ding, A. H., C. F. Nathan and D. J. Stuehr. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages: comparison of activating cytokines and evidence for independent production. J. Immun. 141:2407-2412.
  5. Dou, J. L., C. Y. Tan, Y. G. Du, X. F. Bai, K. Y. Wang, and X. J. Ma. 2007. Effects of chitooligosaccharides on rabbit neutrophils in vitro. Carbohyhr. Polym. 69:209-213. https://doi.org/10.1016/j.carbpol.2006.09.029
  6. Fraifeld, V., R. Blaicher-Kulick, A. A. Degen and J. Kaplanski. 1995. Is hypothalamic prostaglandin $E_{2}$ involved in avian fever? Life Sci. 56:1343-1346. https://doi.org/10.1016/0024-3205(95)00086-0
  7. Gotoh, T., K. Matsushima and K. Kikuchi. 2004. Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere 55:135-140. https://doi.org/10.1016/j.chemosphere.2003.11.016
  8. Green, L. C., D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok and S. R. Tannenbaum. 1982. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal. Biochem. 126:131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  9. Han, Y., L. Zhao, Z. Yu, J. Feng and Q. Yu. 2005. Role of mannose receptor in oligochitosan-mediated stimulation of macrophage function. Int. Immunopharmacol. 5:1533-1542. https://doi.org/10.1016/j.intimp.2005.04.015
  10. Han, K. N., I. K. Kwon, J. D. Lohakare, S. Heo and B. J. Chae. 2007. Chito-oligosaccharides as an alternative to antimicrobials in improving performance, digestibility and microbial ecology of the gut in weanling pigs. Asian-Aust. J. Anim. Sci. 20:556-562. https://doi.org/10.5713/ajas.2007.556
  11. Higuchi, M., N. Higashi, H. Taki and T. Osawa. 1990. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J. Immunol. 144:1425-1431.
  12. Huff, G. R., W. E. Huff, N. C. Rath and G. Tellez. 2006. Limited treatment with ${\beta}$-1,3/1,6-Glucan improved production values of broiler chickens challenged with Escherichia coli. Poult. Sci. 85:613-618. https://doi.org/10.1093/ps/85.4.613
  13. Jeon, Y. J. and S. K. Kim. 2002. Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J. Microbio. Biotech. 12:503-507.
  14. Jeon, Y. J., F. Shahidi and S. K. Kim. 2000. Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Rev. Int. 16:159-176. https://doi.org/10.1081/FRI-100100286
  15. Jeon, Y. J., P. J. Park and S. K. Kim. 2001. Antimicrobial effect of chitoligosaccharides produced by bioreactor. Carbohydr. Polym. 44:71-76. https://doi.org/10.1016/S0144-8617(00)00200-9
  16. John, P., M. D. Cooke, J. Victor and M. D. Dzau. 1997. Nitrite oxide synthase: role in the genesis of vascular disease. Ann. Rev. Med. 48:489-509. https://doi.org/10.1146/annurev.med.48.1.489
  17. Jung, W. K., S. H. Moon and S. K. Kim. 2006. Effect of chitooligosaccharides on calcium bioavailability and bone strength in ovariectomized rats. Life Sci. 78:970-976. https://doi.org/10.1016/j.lfs.2005.06.006
  18. Karupiah, G., Q. W. Xie, R. M. L. Buller, C. Nathan, C. Duarte and J. D. MacMicking. 1993. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Sci. 261:1445-1448. https://doi.org/10.1126/science.7690156
  19. Kim, H. M., S. H. Hong, S. J. Yoo, K. S. Baek, Y. J. Jeon and S. Y. Choung. 2006. Differential effects of chitooligosaccharides on serum cytokine levels in aged subjects. J. Med. Food 9:427-430. https://doi.org/10.1089/jmf.2006.9.427
  20. Kobayashi, M., T. Watanabe, S. Suzuki and M. Suzuki. 1990. Effect of N-acetylchitohexaose against Candida albicans infection of tumor-bearing mice. Microbiol. Immunol. 34:413-426. https://doi.org/10.1111/j.1348-0421.1990.tb01024.x
  21. Kolios, G., V. Valatas and S. G. Ward. 2004. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology 113:427-437. https://doi.org/10.1111/j.1365-2567.2004.01984.x
  22. Lambrecht, B., M. Gonze, D. Morales, G. Meulemans and T. P. van den Berg. 1999. Comparison of biological activities of natural and recombinant chicken interferon-gamma. Vet. Immunol. Immunopathol. 70:257-267. https://doi.org/10.1016/S0165-2427(99)00080-X
  23. Lancaster, J. R. Jr. 1992. Nitric oxide in cells. Anim. Sci. 80:248-259.
  24. Li, X. J., X. S. Piao, S. W. Kim, P. Liu, L. Wang, Y. B. Shen, S. C. Jung and H. S. Lee. 2007. Effects of chito-oligosaccharide supplementation on performance, nutrient digestibility, and serum composition in broiler chickens. Poul. Sci. 86:1107-1114. https://doi.org/10.1093/ps/86.6.1107
  25. Maeda, Y. and Y. Kimura. 2004. Antitumor effects of various low-molecular-weight chitosans are due to increased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma 180-bearing mice. J. Nutr. 134:945-950. https://doi.org/10.1093/jn/134.4.945
  26. Mao, X. F., X. S. Piao, C. H. Lai, D. F. Li, J. J. Xing and B. L. Shi. 2005. Effects of ${\beta}$-glucan obtained from the Chinese herb Astragalus membranaceus and lipopolysaccharide challenge on performance, immunological adrenal, and somatotropic responses of weanling pigs J. Anim. Sci. 83:2775-2782. https://doi.org/10.2527/2005.83122775x
  27. Mast, J. and B. M. Goddeeris. 1999. Development of immunocompetence of broiler chickens. Vet. Immunol. Immunop. 70:245-256. https://doi.org/10.1016/S0165-2427(99)00079-3
  28. Moncada, S., R. M. Palmer and E. A. Higgs. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43:109-142.
  29. Mori, T., Y. Irie, S. I. Nishimura, S. Tokura, M. Matsuura, M. Okumura, T. Kadosawa and T. Fujinaga. 1998. Endothelial cell responses to chitin and its derivatives. J. Biomed. Mater. Res. 43:469-472. https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<469::AID-JBM15>3.0.CO;2-9
  30. Naseem, K. M. 2005. The role of nitric oxide in cardiovascular diseases. Mol. Aspects Med. 26:33-65. https://doi.org/10.1016/j.mam.2004.09.003
  31. Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6:3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  32. NRC. 1994. Nutrient requirements of poultry. 9th rev. ed. National Academy Press, Washington, DC.
  33. Qureshi, M. A., C. L. Heggen and I. Hussain. 2000. Avian macrophage: effector functions in health and disease. Dev. Comp. Immunol. 24:103-119. https://doi.org/10.1016/S0145-305X(99)00067-1
  34. Roura, E., J. Homedes and K. C. Klasing. 1992. Prevention of immunologic stress contributes to the growth-promoting ability of dietary antibiotics in chicks. J. Nutr. 122:2283-2290. https://doi.org/10.1093/jn/122.11.2283
  35. Royal, W. A., R. A. Robinson and K. I. Loken. 1970. The influence of chlortetracycline feeding in Salmonellosis in young calves. Vet. Rec. 86:67-69. https://doi.org/10.1136/vr.86.3.67
  36. Samarasinghe, K., C. Wenk, K. F. S. T. Silva and J. M. D. M. Gunasekera. 2003. Turmeric (Curcuma longa) root powder and mannanoligosaccharides as alternatives to antibiotics in broiler chicken diets. Asian-Aust. J. Anim. Sci. 16(10):1495-1500. https://doi.org/10.5713/ajas.2003.1495
  37. SAS Institute. 1996. SAS User's Guide: Statistics. Version 7.0. SAS Institute, Cary, NC
  38. Seo, W. G., H. O. Pae, N. Y. Kim, G. S. Oh, I. S. Park, Y. H. Kim, Y. M. Kim, Y. H. Lee, C. D. Jun and H. T. Chung. 2000. Synergistic cooperation between water soluble chitosan oligomers and interferon-${\gamma}$ for induction of nitric oxide synthesis and tumoricidal activity in marine peritoneal macriphages. Cancer Lett. 159:189-195. https://doi.org/10.1016/S0304-3835(00)00551-6
  39. Shapiro, F., I. Nir and D. Heller. 1998. Stunting syndrome in broilers: effect of stunting syndrome inoculum obtained from stunting syndrome affected broilers, on broilers, leghorns and turkey poults. Poult. Sci. 77:230-236. https://doi.org/10.1093/ps/77.2.230
  40. Tokoro, A., M. Kobayashi, N. Tatewaki, K. Suzuki, Y. Okawa, T. Mikami, S. Suzuki and M. Suzuki. 1989. Protective effect of N-acetylchitohexaose on Listeria monocytogens infection in mice. Microbiol. Immunol. 3:357-367.
  41. Wang, X. W., Y. G. Du, X. F. Bai and H. G. Li. 2003. The effect of oligochitosan on broiler gut flora, microvilli density, immune function and growth performance. Acta Zoonutrimenta Sinica. 15:32-35.
  42. Wu, G. J. and G. J. Tsai. 2004. Cellulase degradation of shrimp chitosan for the preparation of a water-soluble hydrolysate with immunoactivity. Fish. Sci. 70:1113-1120. https://doi.org/10.1111/j.1444-2906.2004.00912.x
  43. Wu, G. J. and G. J. Tsai. 2007. Chitooligosaccharides in combination with interferon-${\gamma}$ increase nitric oxide production via nuclear factor-${\kappa}B$ activation in murine RAW264.7 macrophages. Food Chem. Toxico. 45:250-258. https://doi.org/10.1016/j.fct.2006.07.025
  44. Wu, G. J., H. T. Lin and G. J. Tsai. 2002. Production of chitooligosaccharides from shrimp chitosan with immuneenhancing activity. Adv. Chitin Sci. 5:77-80.
  45. Xie, Q. W., H. J. Cho, J. Calaycay, R. A. Mumford, K. M. Swiderek, T. D. Lee, A. Ding, T. Troso and C. Nathan. 1992. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Sci. 256:225-228 https://doi.org/10.1126/science.1373522
  46. Yu, Z., L. Zhao and H. Ke. 2004. Potential role of nuclear factor-kappaB in the induction of nitric oxide and tumor necrosis factor-alpha by oligochitosan in macrophages. Int. Immunopharmacol. 4:193-200. https://doi.org/10.1016/j.intimp.2003.12.001
  47. Yuan, S. L., X. S. Piao, D. F. Li, S. W. Kim, H. S. Lee and P. F. Guo. 2006. Effects of dietary Astragalus polysaccharide on growth performance and immune function in weaned pigs Anim. Sci. 82:1-7.
  48. Zafar, T. A., C. M. Weaver, Y. Zhao, B. R. Martin and M. E. Wastney. 2004. Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J. Nutr. 134:399-402. https://doi.org/10.1093/jn/134.2.399
  49. Zhang, M., T. Tan, H. Yuan and C. Rui. 2003. Insecticidal and fungicidal activities of chitosan and oligo-chitosan. J. Bioact. Compat. Polym. 18:391-400. https://doi.org/10.1177/0883911503039019

Cited by

  1. Chitosan-Zn Chelate Increases Antioxidant Enzyme Activity and Improves Immune Function in Weaned Piglets vol.158, pp.1, 2014, https://doi.org/10.1007/s12011-014-9910-1
  2. Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition vol.99, pp.1, 2014, https://doi.org/10.1111/jpn.12222
  3. In vitro antitumor activity of heterochitooligosaccharides (Review) vol.51, pp.1, 2015, https://doi.org/10.1134/S0003683815010068
  4. Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with Escherichia coli K881 vol.88, pp.12, 2010, https://doi.org/10.2527/jas.2009-2771
  5. Effect of dietary xylooligosaccharides on intestinal characteristics, gut microbiota, cecal short-chain fatty acids, and plasma immune parameters of laying hens vol.97, pp.3, 2018, https://doi.org/10.3382/ps/pex372
  6. Effects of Mannan-oligosaccharides and Live Yeast in Diets on the Carcass, Cut Yields, Meat Composition and Colour of Finishing Turkeys vol.22, pp.4, 2008, https://doi.org/10.5713/ajas.2009.80350
  7. Effect of Chitosan on Nitric Oxide Content and Inducible Nitric Oxide Synthase Activity in Serum and Expression of Inducible Nitric Oxide Synthase mRNA in Small Intestine of Broiler Chickens vol.22, pp.7, 2008, https://doi.org/10.5713/ajas.2009.80708
  8. Ginsenoside Re enhances survival of human CD4+T cells through regulation of autophagy vol.10, pp.5, 2008, https://doi.org/10.1016/j.intimp.2010.03.002
  9. Effects of anticoccidial and antibiotic growth promoter programs on broiler performance and immune status vol.93, pp.2, 2008, https://doi.org/10.1016/j.rvsc.2012.01.001
  10. Dietary Chitooligosaccharide Inclusion as an Alternative to Antibiotics Improves Intestinal Morphology, Barrier Function, Antioxidant Capacity, and Immunity of Broilers at Early Age vol.9, pp.8, 2008, https://doi.org/10.3390/ani9080493
  11. Chitosan nano-encapsulation improves the effects of mint, thyme, and cinnamon essential oils in broiler chickens vol.60, pp.5, 2019, https://doi.org/10.1080/00071668.2019.1622078
  12. Immunomodulation of Avian Dendritic Cells under the Induction of Prebiotics vol.10, pp.4, 2020, https://doi.org/10.3390/ani10040698
  13. Effects of chitooligosaccharide supplementation on laying performance, egg quality, blood biochemistry, antioxidant capacity and immunity of laying hens during the late laying period vol.19, pp.1, 2020, https://doi.org/10.1080/1828051x.2020.1827991
  14. Use of black soldier fly and house fly in feed to promote sustainable poultry production vol.7, pp.5, 2021, https://doi.org/10.3920/jiff2020.0064