Structure-Function of the TNF Receptor-like Cysteine-rich Domain of Osteoprotegerin

  • Shin, Joon (Department of Biochemistry and Protein Network Research Center, College of Life Science and Biotechnology, Yonsei University) ;
  • Kim, Young-Mee (Department of Biochemistry and Protein Network Research Center, College of Life Science and Biotechnology, Yonsei University) ;
  • Li, Song-Zhe (Department of Internal Medicine, School of Medicine, Yonsei University) ;
  • Lim, Sung-Kil (Department of Internal Medicine, School of Medicine, Yonsei University) ;
  • Lee, Weontae (Department of Biochemistry and Protein Network Research Center, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2007.07.05
  • Accepted : 2008.01.15
  • Published : 2008.05.31

Abstract

Osteoprotegerin (OPG) is a soluble decoy receptor that inhibits osteoclastogenesis and is closely associated with bone resorption processes. We have designed and determined the solution structures of potent OPG analogue peptides, derived from sequences of the cysteine-rich domain of OPG. The inhibitory effects of the peptides on osteoclastogenesis are dose-dependent ($10^{-6}M-10^{-4}M$), and the activity of the linear peptide at $10^{-4}M$ is ten-fold higher than that of the cyclic OPG peptide. Both linear and cyclic peptides have a ${\beta}$-turn-like conformation and the cyclic peptide has a rigid conformation, suggesting that structural flexibility is an important factor for receptor binding. Based on structural and biochemical information about RANKL and the OPG peptides, we suggest that complex formation between the peptide and RANKL is mediated by both hydrophobic and hydrogen bonding interactions. These results provide structural insights that should aid in the design of peptidyl-mimetic inhibitors for treating metabolic bone diseases caused by abnormal osteoclast recruitment.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF), Yonsei University

References

  1. Anderson, D.M., Maraskovsky, E., Billingsley, W.L., Dougall, W.C., Tometskom, E., Roux, E.M., Terpe, M.C., DuBose, R.F., Cosman, D., and Galibert, L. (1997). A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175-179 https://doi.org/10.1038/36593
  2. Baxter, N.J., and Williamson, M.P. (1997). Temperature dependence of $^1H$ chemical shifts in proteins. J. Biomol. NMR. 9, 359-369 https://doi.org/10.1023/A:1018334207887
  3. Chambers, T.J., Owens, J.M., Hattersely, G., Jat, P.S., and Noble, M.D. (1993). Generation of osteoclast-inductive and osteoclastogenic cell lines from the H-2KbtsA58 transgenic mouse. Proc. Natl. Acad. Sci. USA 90, 5578-5582
  4. Davis, D.G., and Bax, A. (1985). Assignment of complex 1H NMR spectra via two-dimensional homonuclear Hartmann- Hahn spectroscopy. J. Am. Chem. Soc. 107, 2820-2821 https://doi.org/10.1021/ja00295a052
  5. Haynes, D.R., Crotti, T.N., Loric, M., Bain, G.I., Atkins, G.J., and Findlay, D.M. (2001). Osteoprotegerin and receptor activator of nuclear factor kappaB ligand (RANKL) regulate osteoclast formation by cells in the human rheumatoid arthritic joint. Rheumatology 40, 623-630 https://doi.org/10.1093/rheumatology/40.6.623
  6. Ito, S., Wakabayashi, K., Ubukata, O., Hayashi, S., Okada, F., and Hata, T. (2002). Crystal structure of the extracellular domain of mouse RANK ligand at 2.2 ${\AA}$ resolution, J. Biol. Chem. 277, 6631-6636 https://doi.org/10.1074/jbc.M106525200
  7. Jimi, E., Nakamura, I., Amano, H., Taguchi, Y., Tsurukai, T., Tamura, N., and Suda, T. (1996). Osteoclast function is activated by osteoblastic cells through a mechanism involving cell-to-cell contact. Endocrinology 137, 2187-2190 https://doi.org/10.1210/endo.137.5.8612568
  8. Khosla, S. (2001). Minireview: the OPG/RANKL/RANK systeme. Endocrinology 142, 5050-5055 https://doi.org/10.1210/en.142.12.5050
  9. Koradi, R., Billeter, M., and Wuthrich, K. (1996). MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51-55 https://doi.org/10.1016/0263-7855(96)00009-4
  10. Lacey, D.L., Timms, E., Tan, H.L., Kelley, M.J., Dunstan, C.R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., and Scully, S. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165-176 https://doi.org/10.1016/S0092-8674(00)81569-X
  11. Lakovski, R.A., MacArthur, M.W., Moss, D.S., and Thornton, J.M. (1993). PROCHECK: a program to check the stereochemical quality of proteins structures. J. Appl. Crystallogr. 26, 283-291 https://doi.org/10.1107/S0021889892009944
  12. Marion, D., and Wüthrich, K. (1983). Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 113, 967-974 https://doi.org/10.1016/0006-291X(83)91093-8
  13. Nakagawa, N., Kinosaki, M., Yamaguchi, K., Shima, N., Yasuda, H., Yano, K., Morinaga, T., and Higashio, K. (1998). RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem. Biophys. Res. Commun. 253, 395-400 https://doi.org/10.1006/bbrc.1998.9788
  14. Nilges, M., Clore, G.M., and Gronenborn, A.M. (1988a). Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 229, 317-324 https://doi.org/10.1016/0014-5793(88)81148-7
  15. Nilges, M., Clore, G.M., and Gronenborn, A.M. (1988b). Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms. Circumventing problems associated with folding. FEBS Lett. 239, 129-136 https://doi.org/10.1016/0014-5793(88)80559-3
  16. Nilges, M., Gronenborn, A.M., Brunger, A.T., and Clore, G.M. (1988c). Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng. 2, 27-38 https://doi.org/10.1093/protein/2.1.27
  17. Rance, M., Sorensen, O.W., Bodenhausen, G., Wagner, G., Ernst, R.R., and Wuthrich, K. (1983). Improved spectral resolution in COSY 1H-NMR spectra of proteins via double quantum filtering. Biochem. Biophys. Res. Commun. 117, 479-485 https://doi.org/10.1016/0006-291X(83)91225-1
  18. Simonet, W.S., Lacey, D.L., Dunstan, C.R., Kelley, M., Chang, M.-S., Luthy, R., Nguyen, H.Q., Wooden, S., Bennett, L., and Boone, T. (1997). Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309-331 https://doi.org/10.1016/S0092-8674(00)80209-3
  19. Suda, T., Nakamura, I., Jimi, E., and Takahashi, N. (1997). Role of 1 alpha, 25-dihydroxyvitamin D3 in osteoclast differentiation and function. Methods Enzymol. 282, 223-235 https://doi.org/10.1016/S0076-6879(97)82110-6
  20. Takasaki, W., Kajino, Y., Kajino, K., Murali, R., and Greene, M.I. (1997). Structure-based design and characterization of exocyclic peptideomimetics that inhibit TNF${\alpha}$ binding to its receptor. Nat. Biotech. 15, 1266-1270 https://doi.org/10.1038/nbt1197-1266
  21. Ueland, T., Bollerslev, J., and Mosekilde, L. (2002). Osteoclast function is regulated by neighbouring osteoblasts. Osteoprotegerin, RANK and RANK ligand constitute a unique regulatory system for bone resorption with important pathophysiological and therapeutic aspects. Ugeskr Laeger 164, 3526-3530
  22. Wesolowski, G., Duong, L.T., Lakkakorpi, P.T., Nagy, R.M., Tezuka, K., Tanaka, H., Rodan, G.A., and Rodan, S.B. (1995). Isolation and characterization of highly enriched, prefusion mouse osteoclastic cells. Exp. Cell Res. 219, 679-686 https://doi.org/10.1006/excr.1995.1279
  23. Whyte, M.P., Obrecht, S.E., Finnegan, P.M., Jones, J.L., Podgornik, M.N., McAlister, W.H., and Mumm, S. (2002). Osteoprotegerin deficiency and juvenile paget's disease. N. Engl. J. Med. 347, 175-184 https://doi.org/10.1056/NEJMoa013096
  24. Wong, B.R., Rho, J., Arron, J., Robinson, E., Orlinick, J., Orlinick, J., Chao, M., Kalachikov, S., Cayani, E., Bartlett, F.S. 3rd., et al. (1997). TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun Nterminal kinase in T cells. J. Biol. Chem. 272, 25190-25194 https://doi.org/10.1074/jbc.272.40.25190
  25. Woo, J.T., Kasai, S., Stern, P.H., and Nagai, K. (2000). Compactin suppresses bone resorption by inhibiting the fusion of prefusion osteoclasts and disruqting the actin ring in osteoclasts. J. Bone Miner Res. 15, 650-662 https://doi.org/10.1359/jbmr.2000.15.4.650
  26. Wuthrich, K. (1986). NMR of protein and nucleic acids. (New York: John Wiley and Sons)
  27. Wuthrich, K., Billeten, M., and Braun, W. (1983). Pseudostructures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J. Mol. Biol. 169, 949-961 https://doi.org/10.1016/S0022-2836(83)80144-2
  28. Yamaguchi, K., Kinosaki, M., Goto, M., Kobayashi, F., Morinaga, T., and Higashino, K. (1998). Characterization of structural domains of human osteoclastogenesis inhibitory factor. J. Biol. Chem. 273, 5117-5123 https://doi.org/10.1074/jbc.273.9.5117