Structural Characterization of the Genome of BERV γ4 the Most Abundant Endogenous Retrovirus Family in Cattle

  • Xiao, Rui (Laboratory of Mammalian Genomics, Department of Animal Biotechnology, Konkuk University) ;
  • Park, Kwangha (Laboratory of Mammalian Genomics, Department of Animal Biotechnology, Konkuk University) ;
  • Oh, Younshin (Laboratory of Mammalian Genomics, Department of Animal Biotechnology, Konkuk University) ;
  • Kim, Jinhoi (Laboratory of Mammalian Genomics, Department of Animal Biotechnology, Konkuk University) ;
  • Park, Chankyu (Laboratory of Mammalian Genomics, Department of Animal Biotechnology, Konkuk University)
  • Received : 2008.05.19
  • Accepted : 2008.06.19
  • Published : 2008.10.31

Abstract

The genome of replication-competent BERV ${\gamma}4$ provirus, which is the most abundant ERV family in the bovine genome, was characterized in detail. The BERV ${\gamma}4$ genome showed that BERV ${\gamma}4$ harbors 8576 nucleotides and has the typical 5'-long terminal repeat (LTR)-gag-pro-pol-env-LTR-3' retroviral organization with a long leader region positioned before the gag open reading frame. Multiple sequences analysis showed that the nucleotide difference between 5' and 3' LTRs was 4.2% (mean value 0.042) in average, suggesting that the provirus formed at most 13.3 million years ago. Gag separated by a stop codon from pro-pol in the same reading frame, while env resides in another reading frame lacking of a functional surface domain. According to the current bovine genome sequence assembly, the full-length BERV ${\gamma}4$ provirus sequences were only found in the chromosomes 1, 2, 6, 10, 15, 23, 26, 28, X, and unassigned, although the partial sequences almost evenly distributed in the entire bovine genome. This is the first detailed study describing the genome structure of BERV ${\gamma}4$, the most abundant ERV family present in bovine genome. Combined with our recent reports on characterization of ERVs in bovine, this study will contribute to illuminate ERVs in the cattle of which no information was previously available.

Keywords

Acknowledgement

Supported by : Rural Development Administration

References

  1. Andersson, A.C., Yun, Z., Sperber, G.O., Larsson, E., and Blomberg, J. (2005). ERV3 and related sequences in humans: structure and RNA expression. J. Virol. 79, 9270-9284 https://doi.org/10.1128/JVI.79.14.9270-9284.2005
  2. Baillie, G.J., and Wilkins, R.J. (2001). Endogenous type D retrovirus in a marsupial, the common brushtail possum (Trichosurus vulpecula). J. Virol. 75, 2499-2507 https://doi.org/10.1128/JVI.75.5.2499-2507.2001
  3. Baillie, G.J., van de Lagemaat, L. Baust, N.,C., and Mager, D.L. (2004). Multiple groups of endogenous betaretroviruses in mice, rats, and other mammals. J. Virol. 78, 5784-5798 https://doi.org/10.1128/JVI.78.11.5784-5798.2004
  4. Belshaw, R., Pereira, V., Katzourakis, A., Talbot, G., Paces, J., Burt, A., and Tristem, M. (2004). Long-term reinfection of the human genome by endogenous retroviruses. Proc. Natl. Acad. Sci. USA 101, 4894-4899
  5. Belshaw, R., Katzourakis, A., Paces, J., Burt, A., and Tristem, M. (2005). High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection. Mol. Biol. Evol. 22, 814-817 https://doi.org/10.1093/molbev/msi088
  6. Coffin, J.M., Hughes, S. H., and Varmus, H.E. (1997). Retroviruses. (Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press)
  7. Craven, R.C., Leure-duPree, A.E., Weldon, R.A.Jr., and Wills, J.W. (1995). Genetic analysis of the major homology region of the Rous sarcoma virus Gag protein. J. Virol. 69, 4213-4227
  8. Dangel, A.W., Baker, B.J., Mendoza, A.R., and Yu, C.Y. (1995). Complement component C4 gene intron 9 as a phylogenetic marker for primates: long terminal repeats of the endogenous retrovirus ERV-K (C4) are a molecular clock of evolution. Immunogenetics 42, 41-52 https://doi.org/10.1007/BF00164986
  9. Delassus, S., Sonigo, P., and Wain-Hobson, S. (1989). Genetic organization of gibbon ape leukemia virus. Virology 173, 205- 213 https://doi.org/10.1016/0042-6822(89)90236-5
  10. Donahue, P.R., Hoover, E.A., Beltz, G.A., Riedel, N., Hirsch, V.M., Overbaugh, J., and Mullins, J.I. (1988). Strong sequence conservation among horizontally transmissible, minimally pathogenic feline leukemia viruses. J. Virol. 62, 722-731
  11. Donehower, L.A., Bohannon, R.C., Ford, R.J., and Gibbs, R.A. (1990). The use of primers from highly conserved pol regions to identify uncharacterized retroviruses by the polymerase chain reaction. J. Virol. Methods 28, 33-46 https://doi.org/10.1016/0166-0934(90)90085-T
  12. Griffiths, D.J. (2001). Endogenous retroviruses in the human genome sequence. Gen. Biol. 2, 1017.1-1017.5
  13. Johnson, W.E., and Coffin, J.M. (1999). Constructing primate phylogenies from ancient retrovirus sequences. Proc. Natl. Acad. Sci. USA 96, 10254-1060
  14. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120 https://doi.org/10.1007/BF01731581
  15. Klymiuk, N., Müller, M., Brem, G., and Aigner, B. (2002). Characterization of porcine endogenous retrovirus gamma pro-pol nucleotide sequences. J. Virol. 76, 11738-11743 https://doi.org/10.1128/JVI.76.22.11738-11743.2002
  16. Klymiuk, N., Müller, M., Brem, G., and Aigner. B. (2003). Characterization of endogenous retroviruses in sheep. J. Virol. 77, 11268-11273 https://doi.org/10.1128/JVI.77.20.11268-11273.2003
  17. Lebedev, Y.B., Belonovitch, O.S., Zybrova, N.V., Khil, P.P., Kurdyukov, S.G., Vinogradova, T.V., Hunsmann, G., and Sverdlov, E.D. (2000). Differences in HERV-K LTR insertions in orthologous loci of humans and great apes. Gene 247, 265-277 https://doi.org/10.1016/S0378-1119(00)00062-7
  18. Mager, D.L., Hunter, D.G., Schertzer, M., and Freeman, J.D. (1999). Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (HHLA2 and HHLA3). Genomics 59, 255-263 https://doi.org/10.1006/geno.1999.5877
  19. Mayer, J., and Meese, E.U. (2002). The human endogenous retrovirus family HERV-K (HML-3). Genomics 80, 331-343 https://doi.org/10.1006/geno.2002.6839
  20. Mi, S., Lee, X., Li, X., Veldman, G.M., Finnerty, H., Racie, L., LaVallie, E., Tang, X.Y., Edouard, P., Howes, S., et al. (2000). Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785-789 https://doi.org/10.1038/35001608
  21. Patience, C., Wilkinson, D.A., and Weiss, R.A. (1997). Our retroviral heritage. Trends GenetK 13, 116-120 https://doi.org/10.1016/S0168-9525(97)01057-3
  22. Patience, C., Switzer, W.M., Takeuchi, Y., Griffiths, D.J., Goward, M.E., Heneine, W., Stoye, J.P., and Weiss, R.A. (2001). Multiple groups of novel retroviral genomes in pigs and related species. J. Virol. 75, 2771-2775 https://doi.org/10.1128/JVI.75.6.2771-2775.2001
  23. Ribet, D., Harper, F., Dewannieux, M., Pierron, G., and Heidmann, T. (2007). Murine MusD retrotransposon: structure and molecular evolution of an "intracellularized" retrovirus. J. Virol. 81, 1888-1898 https://doi.org/10.1128/JVI.02051-06
  24. Robert, G., and Michael, T. (2003). The evolution, distribution and diversity of endogenous retroviruses. Virus Genes 26, 291-315 https://doi.org/10.1023/A:1024455415443
  25. Roca, A.L., Pecon-Slattery, J., and O'Brien, S.J. (2004). Genomically intact endogenous feline leukemia viruses of recent origin. J. Virol. 78, 4370-4375 https://doi.org/10.1128/JVI.78.8.4370-4375.2004
  26. Shinnick, T.M., Lerner, R.A., and Sutcliffe, J.G. (1981). Nucleotide sequence of Moloney murine leukaemia virus. Nature 293, 543- 548 https://doi.org/10.1038/293543a0
  27. Swanstrom, R., and Wills, J.W. (1997). Synthesis, assembly, and processing of viral proteins. In Retroviruses, J.M., Coffin, S.H., Hughes, and H.E., Varmus, eds. (Cold Spring Harbor Laboratory, NY, USA: Cold Spring Harbor Laboratory Press), pp. 263-334
  28. Tamura, T., Noda, M., and Takano, T. (1981). Structure of the baboon endogenous virus genome: nucleotide sequences of the long terminal repeat. Nucleic Acids Res. 9, 6615-6626 https://doi.org/10.1093/nar/9.23.6615
  29. Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599 https://doi.org/10.1093/molbev/msm092
  30. Tchenio, T., and Heidmann, T. (1991). Defective retroviruses can disperse in the human genome by intracellular transposition. J. Virol. 65, 2113-2118
  31. Temin, H.M. (1981). Structure, variation and synthesis of retrovirus long terminal repeat. Cell 27, 1-3 https://doi.org/10.1016/0092-8674(81)90353-6
  32. Tonjes, R.R., and Niebert M. (2003). Relative age of proviral porcine endogenous retrovirus sequences in Sus scrofa based on the molecular clock hypothesis. J. Virol. 77, 12363-12368 https://doi.org/10.1128/JVI.77.22.12363-12368.2003
  33. Van Regenmortel, M.H., Fauquet, C.M., Bishop, D.H.L., Carsten, E.B., Estes, M.K., Lemon, S.M., Maniloff, J., Mayo, M.A., McGeoch, D.J., Pringle, C.R., et al. (2000). Virus taxonomy: the classification and nomenclature of viruses (San Diego, USA: Academic Press)
  34. Xiao, R., Park, K., Lee, H., Kim, J., and Park C. (2008a). Identification and classification of endogenous retroviruses in cattle. J. Virol. 82, 582-587 https://doi.org/10.1128/JVI.01451-07
  35. Xiao, R., Kim, J., Choi, H., Park, K., Lee, H., and Park, C. (2008b). Characterization of the bovine endogenous retrovirus beta3 Genome. Mol. Cells 25, 142-147