DOI QR코드

DOI QR Code

Identification of AGE-precursors and AGE formation in glycation-induced BSA peptides

  • Ahmad, Waqar (School of Life Science & Technology, Beijing Institute of Technology (BIT)) ;
  • Li, Lili (School of Life Science & Technology, Beijing Institute of Technology (BIT)) ;
  • Deng, Yulin (School of Life Science & Technology, Beijing Institute of Technology (BIT))
  • Published : 2008.07.31

Abstract

The glycation of BSA leads to protein/peptide modifications that result in the formation of AGEs. AGEs react with the amino groups of N-terminal amino acid residues, particularly arginine and lysine residues. Enhanced AGE formation exists in the blood and tissues of diabetics, as well as in aging and other disorders. The Identification of AGEs is of great importance. Mass spectrometry has been applied to identify and structurally elucidate AGEs. Here, we report on the identification of AGE-peptides and AGE precursors based on relative mass changes as a result of specific AGE formation. HPLC-ESIMS, ESI-MS/MS, and the Mascot database were used. The relative mass changes due to the specific type of AGE formation were added to the identified peptides followed by a manual search of the glycated samples, which resulted in the identification of seven peptides for the formation of five AGEs, namely CML, pyrraline, imidazolone A, imidazolone B, and AFGP. Four glycated peptides (FPK, ECCDKPLLEK, IETMR, and HLVDEPQNLIK) were identified in the formation of AGE-precursors.

Keywords

References

  1. Brownlee, M., Cerami, A., and Vlassara H. (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med. 318, 1315-1321. https://doi.org/10.1056/NEJM198805193182007
  2. Nwabuisi, C. (2002) Prophylactic effect of multi-herbal extract 'Agbo-Iba' on malaria induced in mice. East Afr. Med. J. 79, 343-346.
  3. Reynolds, T. M. (1963) Chemistry of nonenzymatic browning. I. The reaction between aldose and amines. Adv. Food Res. 12, 1-52. https://doi.org/10.1016/S0065-2628(08)60005-1
  4. Huh, J. W., Yang, S. J., Hwang, E. Y., Choi, M. M., Lee, H. J., Kim, E. A., Choi, S. Y., Choi, J., Hong, H. N. and Cho, S. W. (2007) Alteration of the quaternary structure of human UDP-glucose dehydrogenase by a double mutation. J Biochem. Mol. Biol. 40, 690-696. https://doi.org/10.5483/BMBRep.2007.40.5.690
  5. Reynolds, T. M. (1965) Chemistry of nonenzymatic browning. II. Adv. Food Res. 14, 167-283 https://doi.org/10.1016/S0065-2628(08)60149-4
  6. Kato, H., Cho, R. K., Okitani, A. and Hayase, F. (1987 ) Responsibility of 3-deoxyglucosone for the glucose-induced polymerization of proteins. Agric. Biol. Chem. 51, 683-689. https://doi.org/10.1271/bbb1961.51.683
  7. Park, J., Kim, S., Oh, J. K., Kim, J. Y., Yoon, S. S., Lee, D. and Kim, Y. (2005) Identification of differentially expressed proteins in imatinib mesylate-resistant chronic myelogenous cells. J. Biochem. Mol. Biol. 38, 725-738. https://doi.org/10.5483/BMBRep.2005.38.6.725
  8. Baynes, J. W. (2004) The clinical chemome: a tool for the diagnosis and management of chronic disease. Clin. Chem. 50, 1116-1117. https://doi.org/10.1373/clinchem.2004.034645
  9. Lee, A. Y., Chung, S. K. and Chung, S. S. (1995) Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Proc. Natl. Acad. Sci. U.S.A. 92, 2780-2784. https://doi.org/10.1073/pnas.92.7.2780
  10. Chen, L., Yang, Y., Han, J., Zhang, B. Y., Zhao, L., Nie, K., Wang, X. F., Li, F., Gao, C., Dong, X. P. and Xu, C. M. (2007) Removal of the glycosylation of prion protein provokes apoptosis in SF126. J. Biochem. Mol. Biol. 40, 662-669. https://doi.org/10.5483/BMBRep.2007.40.5.662
  11. Koya, D. and King, G. (1998) Protein kinase C activation and the development of diabetic complications. Diabetes. 47, 859-866. https://doi.org/10.2337/diabetes.47.6.859
  12. Kolm-Litty, V., Sauer, U., Nerlich, A., Lehmann, R. and Schleicher, E. D. (1998) High glucose-induced transforming growth factor fetal production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J. Clin. Invest. 101, 160-169. https://doi.org/10.1172/JCI119875
  13. Sing, R., Barden, A., Mori, T. and Beilin, L. (2001) Advanced glycation endproducts: a review. Diabetologia. 44, 129-146. https://doi.org/10.1007/s001250051591
  14. Kohn, R. R., Cerami, A. and Monnier, V. M. (1984) Collagen aging in vitro by nonenzymatic glycosylation and browning. Diabetes. 33. 57-59. https://doi.org/10.2337/diabetes.33.1.57
  15. Wu, J. T. (1993) Advanced glycosylation end products: a new disease marker for diabetes and aging. J. Clin. Lab. Anal. 7, 252-255. https://doi.org/10.1002/jcla.1860070503
  16. Beisswenger, P. J., Makita, Z., Cuphrey, T. J., Moore, L. L., Jean, S., Brinck-Johnsen, T., Bucala, R. and Vlassara, H. (1995) Formation of immunochemical advanced glycosylation end products precedes and correlates with early manifestations of renal and retinal disease in diabetes. Diabetes 44, 824-829. https://doi.org/10.2337/diabetes.44.7.824
  17. Wu, J. T. (1993) Review of diabetes: identification of markers for early detection, glycemic control, and monitoring clinical complications. J. Clin. Lab. Anal. 7, 293-300. https://doi.org/10.1002/jcla.1860070510
  18. Korbet, S. M., Makita, Z., Firanek, C. A. and Vlassara, H. (1993) Advanced glycosylation end products in continuous ambulatory peritoneal dialysis patients. Am. J. Kidney Dis. 22, 588-591. https://doi.org/10.1016/S0272-6386(12)80933-4
  19. Makita, Z., Vlassara, H., Cerami, A. and Bucala, R. (1992) Immunochemical detection of advanced glycosylation end products in vivo. J. Biol. Chem. 267, 5133-5138.
  20. Makita, Z., Radoff, S., Rayfield, E. J., Yang, Z., Skolnik, E., Delaney, V., Friedman, E. A., Cerami, A. and Vlassara, H. (1991) Advanced glycosylation end products in patients with diabetic nephropathy. N. Engl. J. Med. 325, 836-842. https://doi.org/10.1056/NEJM199109193251202
  21. Vlassara, H. (1994) Recent progress on the biologic and clinical significance of advanced glycosylation end prod. J. Lab. Clin. Med. 124, 19-30.
  22. Thorpe, S. R and Baynes, J. W. (1996) Role of the Maillard reaction in diabetes mellitus and diseases of aging. Drugs Aging. 9, 69-77. https://doi.org/10.2165/00002512-199609020-00001
  23. Yim, M. B, Yim, H. S, Lee, C., Kang, S. O. and Chock, P. B. (2001) Protein glycation: creation of catalytic sites for free radical generation. Ann. N.Y. Acad. Sci. 928, 48-53.
  24. Makita, Z., Vlassara, H., Rayfield, E., Cartwright, K., Friedman, E., Rodby, R., Cerami, A. and Bucala, R. (1992) Hemoglobin-AGE: a circulating marker of advanced glycosylation. Science 258, 651-653. https://doi.org/10.1126/science.1411574
  25. Gaskel, S. J. (1986) Mass spectrometry in biomedical research, John Wiley & Sons, New York, U.S.A.
  26. Brownlee, M., Vlassara, H. and Cerami, A. (1984) Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann. Intern. Med. 101, 527-537. https://doi.org/10.7326/0003-4819-101-4-527
  27. Sebekova, K., Kupcova, V., Schinzel, R. and Heidland, A. (2002), Markedly elevated levels of plasma advanced glycation end products in patients with liver cirrhosis-amelioration by liver transplantation. J. Hepatol. 36, 66-71.
  28. Thornalley, P. J, Battah, S., Ahmed, N., Karachalias, N., Agalou, S., Babaei-Jadidi, R. and Dawnay, A. (2003) Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J. 375, 581-592. https://doi.org/10.1042/BJ20030763
  29. Niwa, T. (1997) Mass spectrometry in the search for uremic toxins. Mass Spectrom. Rev. 16, 307-332. https://doi.org/10.1002/(SICI)1098-2787(1997)16:6<307::AID-MAS1>3.0.CO;2-L
  30. Zhang, Y., Cocklin, R. R., Bidasee, K. R. and Wang, M. (2003) Rapid determination of advanced glycation end products of proteins using MALDI-TOF-MS and PERL script peptide searching algorithm. J. Biomol. Tech. 14, 224-230.
  31. Furth, A., J. (1997) Glycated proteins in diabetes. Br. J. Biomed. Sci. 54, 192-200.
  32. Lapolla, A., Traldi, P. and Fedele, D. (2005) Importance of measuring products of non-enzymatic glycation of proteins. Clin. Biochem. 38, 103-115. https://doi.org/10.1016/j.clinbiochem.2004.09.007
  33. Chen, S., Cohen, M. P., Lautenslager, G. T., Shearman, C. W. and Ziyadeh, F. N. (2001) Glycated albumin stimulates TGF-beta 1 production and protein kinase C actvity in glomerular endothelial cells. Kidney Int. 59, 673-681. https://doi.org/10.1046/j.1523-1755.2001.059002673.x
  34. Chen, S., Chen, M. P. and Ziyadeh, F. N. (2000) Amadoriglycated albumin in diabetic nephropathy: patophysiologic connections. Kidney Int. Suppl. 77, S40-S44.
  35. Schalkwijk, C. G., Chatuverdi, N., Twaafhoven, H., van Hinsbergh, V. W. and Stehouwer, C. D. (2002) Amadori albumin correlates with microvascular complications and precedes nephropathy in type 1 diabetes. Eur .J. Clin. Invest. 32, 500-506. https://doi.org/10.1046/j.1365-2362.2002.01011.x

Cited by

  1. Non-enzymatic glycation and glycoxidation protein products in foods and diseases: An interconnected, complex scenario fully open to innovative proteomic studies vol.33, pp.1, 2014, https://doi.org/10.1002/mas.21378
  2. Proteomic Analysis of Glycated Proteins from Streptozotocin-Induced Diabetic Rat Kidney vol.50, pp.1, 2012, https://doi.org/10.1007/s12033-011-9409-3
  3. A New Strategy for Early Diagnosis of Type 2 Diabetes by Standard-Free, Label-Free LC-MS/MS Quantification of Glycated Peptides vol.62, pp.11, 2013, https://doi.org/10.2337/db13-0347
  4. Sensitive and Site-Specific Identification of Carboxymethylated and Carboxyethylated Peptides in Tryptic Digests of Proteins and Human Plasma vol.14, pp.2, 2015, https://doi.org/10.1021/pr500799m
  5. Monotopic modifications derived from in vitro glycation of albumin with ribose vol.34, pp.12, 2013, https://doi.org/10.1002/elps.201300014
  6. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises vol.113, pp.1, 2013, https://doi.org/10.1021/cr300073p
  7. Proteomic Analysis of Protease Resistant Proteins in the Diabetic Rat Kidney vol.12, pp.1, 2013, https://doi.org/10.1074/mcp.M112.020651