Development of a Formic Acid Fuel Cell Anode by Multi-layered Bismuth Modification

Bismuth를 이용한 다층구조의 개미산 연료전지 연료전극 개발

  • Kwon, Youngkook (Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Uhm, Sunghyun (Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Jaeyoung (Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • 권영국 (광주과학기술원 환경공학과 Ertl 전기화학.촉매연구실) ;
  • 엄성현 (광주과학기술원 환경공학과 Ertl 전기화학.촉매연구실) ;
  • 이재영 (광주과학기술원 환경공학과 Ertl 전기화학.촉매연구실)
  • Received : 2008.04.02
  • Accepted : 2008.05.06
  • Published : 2008.08.31

Abstract

The underpotential deposited Bi on Pt($Bi_{upd}/Pt$) anode for formic acid fuel cells (FAFCs) was developed using multi-layered preparation method for better electrocatalytic utilization of Pt. The electron probe microanalysis (EPMA) result indicated that $Bi_{upd}$ remains through the catalyst layer during stability test. In performance test, the multilayered $Bi_{upd}$ on Pt black showed superior performance by approximately 200 mV at current density of $150mA/cm^2$ compared with PtRu black anode catalyst. Based on preparation condition of $Bi_{upd}/Pt$ black, carbon supported $Bi_{upd}/Pt/C$ electrode was prepared and it showed enhanced performance and stability.

본 연구에서는 개미산 연료전지의 연료극에서 Pt 촉매의 안정성과 활성을 높이기 위해 Bi를 UPD법을 이용하여 Pt 촉매 위에 증착시켰다. 증착된 Bi의 활용도를 높이기 위해 다층 전극구조를 적용하였으며, 전자탐침미세분석(EPMA) 결과에서 Bi가 장기성능 실험동안 촉매층에 안정적으로 존재하는 것을 확인할 수 있었다. 연료전지 성능실험에서는 Pt black 촉매 위에 Bi를 UPD한 다층 구조의 전극이 PtRu black 촉매보다 전류밀도 $150mA/cm^2$에서 약 200 mV정도 높은 성능을 나타냈다. Pt black을 40% Pt/C로 대체했을 경우 역시 높은 성능과 장기 안정성을 보였다.

Keywords

Acknowledgement

Supported by : 광주과학기술원

References

  1. Lipkowski, J. and Ross, P. N., Electrocatalysis, Wiley-VCH, New York (1998)
  2. Vielstich, W., Fuel Cells; Modern Process for the Electrochemical Production of Energy, Wiley-Interscience, London(1965)
  3. Nakabayashi, S., Yagi, I., Sugiyama, N., Tamura, K. and Uosaki, K., "Reaction pathway of four-electron oxidation of formaldehyde on platinum electrode as observed by in situ optical spectroscopy," Surf. Sci., 386(1-3), 82-88(1997) https://doi.org/10.1016/S0039-6028(97)00329-4
  4. Vielstich, W., Lamm, A. and Gasteiger, H. A., Handbook of Fuel Cells, John Wiley & Sons Ltd., New York, NY(2003)
  5. Kang, S., Lee, J., Lee, J. K., Chung, S. Y. and Tak, Y., "Influence of Bi Modification of Pt Anode Catalyst in Direct Formic Acid Fuel Cells," J. Phys. Chem. B, 110, 7270-7274(2006) https://doi.org/10.1021/jp056753v
  6. Wang, X., Hu, J-M. and Hsing, I-M., "Electrochemical investigation of formic acid electro-oxidation and its crossover through a Nafionmembrane," J. Electroanal. Chem., 562(1), 73-80(2004) https://doi.org/10.1016/j.jelechem.2003.08.010
  7. Zhu, Y., Ha, S. and Masel, R. I., "High power density direct formic acid fuel cells," J. Powers Sources, 130(1-2), 8-14(2004) https://doi.org/10.1016/j.jpowsour.2003.11.051
  8. Rice, C., Ha, S., Masel, R. I., Waszczuk, P., Wieckowski, A. and Barnard, T. J., "Direct formic acid fuel cells," J. Powers Sources, 111(1), 83-89(2002) https://doi.org/10.1016/S0378-7753(02)00271-9
  9. Ha, S., Rice, C., Masel, R.I., and Wieckowski, A., "Methanol conditioning for improved performance of formic acid fuel cells," J. Powers Sources, 112(2), 655-659(2002) https://doi.org/10.1016/S0378-7753(02)00453-6
  10. Ha, S., Larsen, R., Zhu, Y. and Masel, R. I., "Direct Formic Acid Fuel Cells with 600 mA $cm^{-2}$ at 0.4 V and 22 $^{\circ}$${\'{y}}$C," Fuel Cells, 4(4), 337-343(2004) https://doi.org/10.1002/fuce.200400052
  11. Zhu, Y., Khan, Z. and Masel, R. I., "The behavior of palladium catalysts in direct formic acid fuel cells," J. Powers Sources, 139(1-2), 15-20(2005) https://doi.org/10.1016/j.jpowsour.2004.06.054
  12. Ha, S., Larsen, R. and Masel, R. I., "Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells," J. Powers Sources, 144(1), 28-34(2005) https://doi.org/10.1016/j.jpowsour.2004.12.031
  13. Larsen, R., Ha, S., Zakzeski, J. and Masel, R. I., "Unusually active palladium-based catalysts for the electrooxidation of formic acid," J. Powers Sources, 157(1), 78-84(2006) https://doi.org/10.1016/j.jpowsour.2005.07.066
  14. Uhm, S., Chung, S. T., and Lee, J., "Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell," Electrochem. Commun., 9(8), 2027-2031(2007) https://doi.org/10.1016/j.elecom.2007.05.029
  15. Antolini, E., Salgado, J. R. C. and Gonzalez, E. R., "The methanol oxidation reaction on platinum alloys with the first row transition metals: The case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: A short review," Appl. Catal. B: Environ., 63(1-2), 137-149(2006) https://doi.org/10.1016/j.apcatb.2005.09.014