Haemocytes responses of the pearl oyster, Pincdata fucata, at different temperatures

  • Choi, Young-Joon (Institute of Marine Industry, College of Marine Science, Gyeongsang National University) ;
  • Hwang, Jee-Youn (Pathology Division, National Fisheries Research and Development Institute) ;
  • Baeck, Gun-Wook (Institute of Marine Industry, College of Marine Science, Gyeongsang National University) ;
  • Kim, Mu-Chan (Institute of Marine Industry, College of Marine Science, Gyeongsang National University) ;
  • Park, Hyung-Jun (Institute of Marine Industry, College of Marine Science, Gyeongsang National University) ;
  • Choi, Byoung-Dae (Institute of Marine Industry, College of Marine Science, Gyeongsang National University) ;
  • Kang, Suk-Joong (Institute of Marine Industry, College of Marine Science, Gyeongsang National University) ;
  • Park, Chan-Il (Institute of Marine Industry, College of Marine Science, Gyeongsang National University)
  • 발행 : 20081200

초록

The effects of temperatures on pearl oyster, Pincdata fucata were studied by evaluating some functional immune responses of the haemocytes. Water temperature is one of the most important factors in bivalve immune defense. Haemocytes comprise a primary line by inflammation, encapsulation and phagocytosis. These phagocytic abilities of haemocytes were observed in different temperatures. The number of the circulating haemocytes by migratory assay, phagocytic activities by MTT assay and reactive oxygen species production of haemocytes by CL assay were measured at different temperatures. Results showed that pearl oyster maintained at 20℃ and 25℃ displayed significantly higher values for all the measured immune parameters in comparison to maintained at 10, 15, and 30℃.

키워드

참고문헌

  1. Anderson, R.S.: Hemocyte-derived reactive oxygen intermediate production in four bivalve mollusks. Dev. Comp. Immunol., 18: 89-96, 1994 https://doi.org/10.1016/0145-305X(94)90237-2
  2. Auffret, M. and Oubella, R.: Comp. Biochem. Physiol., 118: 705-712, 1997 https://doi.org/10.1016/S0300-9629(97)00017-0
  3. Bachere, E., Hervio, D., Mialhe, E. and Grizel, H.: Evidence of neutralizing activity against T3 coliphage in oyster Crassostrea gigas hemolymph. Dev. Comp. Immunol., 14: 261-268, 1990 https://doi.org/10.1016/0145-305X(90)90017-9
  4. Carballal, M.J., Lopez C., Azevedo C. and Villalba A.: In vitro study of phagocytic ability of Mytilus galloprovincialis Lmk. haemocytes. Fish Shellfish Immunol., 7: 403-416, 1997 https://doi.org/10.1006/fsim.1997.0094
  5. Cheng, W., Hsiao, I.S., Hsu, C.H. and Chen, J.C.: Change in water temperature on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Fish Shellfish Immunol., 17: 235-243, 2004 https://doi.org/10.1016/j.fsi.2004.03.007
  6. Chou, H.Y., Li, H.J. and Lo, C.F.: Pathogenicity of a birnavirus to hard clam (Meretrix lusoria) and effect of temperature stress on its virulence. Fish Pathol., 29: 171-175, 1994 https://doi.org/10.3147/jsfp.29.171
  7. Chu, F.L.E. and Peyre, J.F.: Perkinsus marinus sus-ceptibility and defense-related activities in eastern oysters Crassostrea virginica: temperature effects. Dis. Aquat. Org., 16: 223- 234, 1993 https://doi.org/10.3354/dao016223
  8. Gagnaire, B., Frouin, H., Moreau, K., Guyon, H.T. and Renault, T.: Effects of temperature and salinity on haemocyte activities of the pacific oyster, Crassostrea gigas. Fish Shellfish Immunol., 20: 536-547, 2006 https://doi.org/10.1016/j.fsi.2005.07.003
  9. Hauton, C., Hawkins, L.E. and Hutchinson, S.: The effects of salinity on the interaction between a pathogen (Listonella anguillarum) and components of a host (Ostrea edulis) immune system. Comp. Biochem. Physiol. 127: 203-212, 2000 https://doi.org/10.1016/S0305-0491(00)00251-0
  10. Jones, T.O., Whyte, J.N., Ginther, N.G.., Townsend, L.D. and Iwama, G..K.: Haemocyte changes in the pacific oyster, Crassostrea gigas, caused by exposure to domoic acid in the diatom Pseudonitzschia pungens. J. Int'l. Soc. Toxicol., 33: 347-353, 1995
  11. Kaspar, C.W. and Tamplin, M.L.: Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl. Environ. Microbiol., 59: 2425-2429, 1993
  12. Kitamura, S., Jung, S. and Suzuki, S.: Seasonal change of infective state of marine birnavirus in Japanese pearl oyster Pinctada fucata. Arch. Virol., 145: 2003-2014, 2000 https://doi.org/10.1007/s007050070036
  13. Kitamura, S., Tomaru, Y., Kawabata, Z. and Suzuki, S.: Detection of marine birnavirus in the Japanese pearl oyster Pinctada fucata and seawater from different depths. Dis. Aquat. Org., 50: 211-217, 2002 https://doi.org/10.3354/dao050211
  14. Kitamura, S.I., Ko, J.Y., Lee, W.L., Kim, S.R., Song, J.Y., Kim, D.K., Jung, S.J. and Oh, M.J.: Seasonal prevalence of lymphocystis disease virus and aquabirnavirus in Japanese flounder, Paralichthys olivaceus and Blue mussel, Mytilus galloprovincialis. Aquaculture, 266: 26-31, 2007 https://doi.org/10.1016/j.aquaculture.2007.02.034
  15. Lacoste, A., Malham, S.K., Gélébart, F., Cueff, A. and Poulet, S.A.: Stress-induced immune changes in the oyster Crassostrea gigas. Dev. Comp. Immunol., 26: 1-9, 2002 https://doi.org/10.1016/S0145-305X(01)00067-2
  16. Monari, M., Matozzo, V., Foschi, J., Cattani, O., Serrazanetti, G.P. and Marin, M.G.: Effects of high temperatures on functional responses of haemocytes in the clam Chamelea gallina. Fish Shellfish Immunol., 22: 98- 114, 2007 https://doi.org/10.1016/j.fsi.2006.03.016
  17. Mortensen, S.H., Evelyne, B., Le, G.G. and Mialhe, E.: Persistence of infectious pancreatic necrosis virus (Ipnv) in scallops Pecten maximus. Dis. Aquat. Org., 12: 221-227, 1992 https://doi.org/10.3354/dao012221
  18. Mortensen, S.H., Nilsen, R.K., and Hjeltnes, B.: Stability of an infectious pancreatic necrosis virus (Ipnv) isolate stored under different laboratory conditions. Dis. Aquat. Org., 33: 67-71, 1998 https://doi.org/10.3354/dao033067
  19. Oliver, L.M. and Fisher, W.S.: Appraisal of perspective bivalve immunomarkers. Biomarkers, 4: 510-530.1999 https://doi.org/10.1080/135475099230679
  20. Paillard, C., Allam, B. and Oubella, R.: Effect of temperature on defense parameters in manila clam Ruditapes philippinarum challenged with Vibrio tapetis, Dis. Aquat. Org., 59: 249-262, 2004 https://doi.org/10.3354/dao059249
  21. Parry, H.E. and Pipe, R.K.: Interactive Effects of temperature and copper on immunocompetence and disease susceptibility in mussels (Mytilus edulis). Aquat. Toxicol., 69: 311- 325, 2004 https://doi.org/10.1016/j.aquatox.2004.06.003
  22. Pipe, R.K.: Generation of reactive oxygen metabolites by the haemocytes of the Mussel Mytilus edulis. Dev. Comp. Immunol., 16: 111-122, 1992 https://doi.org/10.1016/0145-305X(92)90012-2
  23. Suzuki, S., Kamakura M. and Kusuda R.: Isolation of birnavirus from Japanese pearl oyster Pinctada fucata. Fish. Sci., 64: 342-343, 1998 https://doi.org/10.2331/fishsci.64.342
  24. Tomaru, Y., Kawabata Z. and Nakano S.: Mass mortality of the Japanese pearl oyster Pinctada fucata martensii in relation to water temperature, chlorophyll a and phytoplankton composition. Dis. Aquat. Org., 44: 61- 68, 2001 https://doi.org/10.3354/dao044061
  25. Tripp, M. R.: Agglutinins in the hemolymph of the Hard clam, Mercenaria mercenaria. J. Invert. Pathol., 59: 228-234, 1992 https://doi.org/10.1016/0022-2011(92)90126-O
  26. Volety, A.K., Oliver L.M., Genthner F.J. and Fisher W.S.: A rapid tetrazolium dye reduction assay to assess the bactericidal activity of oyster (Crassostrea virginica) hemocytes against Vibrio parahaemolyticus. Aquaculture, 172: 205-222, 1999 https://doi.org/10.1016/S0044-8486(98)00438-4