AG490, a Jak2-specific Inhibitor, Induces Osteoclast Survival by Activating the Akt and ERK Signaling Pathways

  • Kwak, Han Bok (Department of Anatomy, School of Medicine, Wonkwang University) ;
  • Sun, Hyun Min (Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University) ;
  • Ha, Hyunil (Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University) ;
  • Lee, Jong Ho (Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University) ;
  • Kim, Ha Neui (Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University) ;
  • Lee, Zang Hee (Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University)
  • Received : 2008.06.27
  • Accepted : 2008.07.21
  • Published : 2008.11.30

Abstract

Osteoclasts are multinucleated cells with the unique ability to resorb bone. Elevated activity of these cells under pathologic conditions leads to the progression of bone erosion that occurs in osteoporosis, periodontal disease, and rheumatoid arthritis. Thus, the regulation of osteoclast apoptosis is important for bone homeostasis. In this study, we examined the effects of the Janus tyrosine kinase 2 specific inhibitor AG490 on osteoclast apoptosis. We found that AG490 greatly inhibited osteoclast apoptosis. AG490 stimulated the phosphorylation of Akt and ERK. Adenovirus-mediated expression of dominant negative (DN)-Akt and DN-Ras in osteoclasts inhibited the survival of osteoclasts despite the presence of AG490. Cytochrome c release during osteoclast apoptosis was inhibited by AG490 treatment, but this effect was inhibited in the presence of LY294002 or U0126. AG490 suppressed the pro-apoptotic proteins Bad and Bim, which was inhibited in osteoclasts infected with DN-Akt and DN-Ras adenovirus. In addition, constitutively active MEK and myristoylated-Akt adenovirus suppressed the cleavage of pro-caspase-9 and -3 and inhibited osteoclast apoptosis induced by etoposide. Taken together, our results suggest that AG490 inhibited cytochrome c release into the cytosol at least partly by inhibiting the pro-apoptotic proteins Bad and Bim, which in turn suppressed caspase-9 and -3 activation, thereby inhibiting osteoclast apoptosis.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Akiyama, T., Bouillet, P., Miyazaki, T., Kadono, Y., Chikuda, H., Chung, U.I., Fukuda, A., Hikita, A., Seto, H., Okada, T., et al. (2003). Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. EMBO J. 22, 6653-6664 https://doi.org/10.1093/emboj/cdg635
  2. Bergmann, A. (2002). Survival signaling goes BAD. Dev. Cell 3, 607-608 https://doi.org/10.1016/S1534-5807(02)00328-3
  3. Darnell, J.E., Kerr, I.M., and Stark, G.R. (1994). Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415-1421
  4. Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M.E. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241 https://doi.org/10.1016/S0092-8674(00)80405-5
  5. De Vos, J., Jourdan, M., Tarte, K., Jasmin, C., and Klein, B. (2000). JAK2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in myeloma cells. Br. J. Haematol. 109, 823-828 https://doi.org/10.1046/j.1365-2141.2000.02127.x
  6. Dijkers, P.F., Medema, R.H., Lammers, J.W., Koenderman, L., and Coffer, P.J. (2000). Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr. Biol. 10, 1201-1204 https://doi.org/10.1016/S0960-9822(00)00728-4
  7. Grigoriadis, A.E., Wang, Z.Q., Cecchini, M.G., Hofstetter, W., Felix, R., Fleisch, H.A., and Wagner, E.F. (1994). c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443-448 https://doi.org/10.1126/science.7939685
  8. Hu, P., Han, Z., Couvillon, A.D., and Exton, J.H. (2004). Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J. Biol. Chem. 279, 49420-49429 https://doi.org/10.1074/jbc.M407700200
  9. Huang, H.M., Huang, C.J., and Yen, J.J. (2000). Mcl-1 is a common target of stem cell factor and interleukin-5 for apoptosis prevention activity via MEK/MAPK and PI-3K/Akt pathways. Blood 96, 1764-1771
  10. Jane, E.P., Premkurmar, D.R., and Pollack, I.F. (2007). AG490 influences UCN-01-induced cytotoxicity in glioma cells in a p53-dependent fashion, correlating with effects on BAX cleavage and BAD phosphorylation. Cancer Lett. 257, 36-46 https://doi.org/10.1016/j.canlet.2007.06.020
  11. Jiang, X., and Wang, X. (2004). Cytochrome C-mediated apoptosis. Annu. Rev. Biochem. 73, 87-106 https://doi.org/10.1146/annurev.biochem.73.011303.073706
  12. Jones, R.G., Parsons, M., Bonnard, M., Chan, V.S., Yeh, W.C., Woodgett, J.R., and Ohashi, P.S. (2000). Protein kinase B regulates T lymphocyte survival, nuclear factor kappaB activation, and Bcl-X(L) levels in vivo. J. Exp. Med. 191, 1721-1734 https://doi.org/10.1084/jem.191.10.1721
  13. Koga, T., Inui, M., Inoue, K., Kim, S., Suematsu, A., Kobayashi, E., Iwata, T., Ohnishi, H., Matozaki, T., Kodama, T., et al. (2004). Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758-763 https://doi.org/10.1038/nature02444
  14. Kwak, H.B., Lee, S.W., Li, Y.J., Kim, Y.A., Han, S.Y., Jhon, G.J., Kim, H.H., and Lee, Z.H. (2004). Inhibition of osteoclast differentiation and bone resorption by a novel lysophosphatidylcholine derivative, SCOH. Biochem. Pharmacol. 67, 1239-1248 https://doi.org/10.1016/j.bcp.2003.10.032
  15. Lee, S.E., Chung, W.J., Kwak, H.B., Chung, C.H., Kwack, K.B., Lee, Z.H., and Kim, H.H. (2001). Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J. Biol. Chem. 276, 49343-49349 https://doi.org/10.1074/jbc.M103642200
  16. Letai, A., Bassik, M.C., Walensky, L.D., Sorcinelli, M.D., Weiler, S., and Korsmeyer, S.J. (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183-192 https://doi.org/10.1016/S1535-6108(02)00127-7
  17. Ley, R., Balmanno, K., Hadfield, K., Weston, C., and Cook, S.J. (2003). Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, bim. J. Biol. Chem. 278, 18811-18816 https://doi.org/10.1074/jbc.M301010200
  18. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X. (1997). Cytochrome c and dATPdependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489 https://doi.org/10.1016/S0092-8674(00)80434-1
  19. Lindsten, T., Ross, A.J., King, A., Zong, W.X., Rathmell, J.C., Shiels, H.A., Ulrich, E., Waymire, K.G., Mahar, P., Frauwirth, K., et al. (2000). The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389-1399 https://doi.org/10.1016/S1097-2765(00)00136-2
  20. Manolagas, S.C. (2000). Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 21, 115-137
  21. Meydan, N., Grunberger, T., Dadi, H., Shahar, M., Arpaia, E., Lapi dot, Z., Leeder, J.S., Freedman, M., Cohen, A., Gazit, A., et al. (1996). Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379, 645-648 https://doi.org/10.1038/379645a0
  22. Miyazaki, T., Katagiri, H., Kanegae, Y., Takayanagi, H., Sawada, Y., Yamamoto, A., Pando, M.P., Asano, T., Verma, I.M., Oda, H., et al. (2000). Reciprocal role of ERK and NF-kappaB pathways in survival and activation of osteoclasts. J. Cell Biol. 148, 333-342 https://doi.org/10.1083/jcb.148.2.333
  23. Neubauer, H., Cumano, A., Muller, M., Wu, H., Huffstadt, U., and Pfeffer, K. (1998). Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93, 397-409 https://doi.org/10.1016/S0092-8674(00)81168-X
  24. Novak, U., Harpur, A.G., Paradiso, L., Kanagasundaram, V., Jaworowski, A., Wilks, A.F., and Hamilton, J.A. (1995). Colonystimulating factor 1-induced STAT1 and STAT3 activation is accompanied by phosphorylation of Tyk2 in macrophages and Tyk2 and JAK1 in fibroblasts. Blood 86, 2948-2956
  25. Oshiro, M.M., Landowski, T.H., Catlett-Falcone, R., Hazlehurst, L.A., Huang, M., Jove, R., and Dalton, W.S. (2001). Inhibition of JAK kinase activity enhances Fas-mediated apoptosis but reduces cytotoxic activity of topoisomerase II inhibitors in U266 myeloma cells. Clin. Cancer Res. 7, 4262-4271
  26. Pedranzini, L., Dechow, T., Berishaj, M., Comenzo, R., Zhou, P., Azare, J., Bornmann, W., and Bromberg, J. (2006). Pyridone 6, A pan-janus-activated kinase inhibitor, induces growth inhibition of multiple myeloma cells. Cancer Res. 66, 9714-9721 https://doi.org/10.1158/0008-5472.CAN-05-4280
  27. Rho J., Takami M., and Choi, Y. (2004). Osteoimmunology: interactions of the immune and skeletal systems. Mol. Cells 17, 1-9
  28. Saito, K., Iwashita, J., Murata, J., and Abe, T. (2006). The tyrosine kinase inhibitor AG490 inhibits growth of cancer cells and activates ERK in LS174T and HT-29 cells. Anticancer Res. 26, 1085-1090
  29. Salvesen, G.S., and Dixit, V.M. (1997). Caspases: intracellular signaling by proteolysis. Cell 91, 443-446 https://doi.org/10.1016/S0092-8674(00)80430-4
  30. Sandberg, E.M., and Sayeski, P.P. (2004). Jak2 tyrosine kinase mediates oxidative stress-induced apoptosis in vascular smooth muscle cells. J. Biol. Chem. 279, 34547-34552 https://doi.org/10.1074/jbc.M405045200
  31. Saudou, F., Finkbeiner, S., Devys, D., and Greenberg, M.E. (1998). Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55-66 https://doi.org/10.1016/S0092-8674(00)81782-1
  32. Scheid, M.P., Schubert, K.M., and Duronio, V. (1999). Regulation of bad phosphorylation and association with Bcl-xL by the MAPK/Erk kinase. J. Biol. Chem. 274, 31108-31113 https://doi.org/10.1074/jbc.274.43.31108
  33. Simon, Hu., Yousefi, S., Dibbert, B., Levi-Schaffer, F., and Blaser, K. (1997). Anti-apoptotic signals of granulocyte-macrophage colony-stimulating factor are transduced via Jak2 tyrosine kinase in eosinophils. Eur. J. Immunol. 27, 3536-3539 https://doi.org/10.1002/eji.1830271256
  34. Takayanagi, H. (2007). Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292-304 https://doi.org/10.1038/nri2062
  35. Takayanagi, H., Ogasawara, K., Hida, S., Chiba, T., Murata, S., Sato, K., Takaoka, A., Yokochi, T., Oda, H., Tanaka, K., et al. (2000). T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408, 600-605 https://doi.org/10.1038/35046102
  36. Tanaka, S., Miyazaki, T., Fukuda, A., Akiyama, T., Kadono, Y., Wakeyama, H., Kono, S., Hoshikawa, S., Nakamura, M., Ohshima, Y., et al. (2006). Molecular mechanism of the life and death of the osteoclast. Ann. N. Y. Acad. Sci. 1068, 180-186 https://doi.org/10.1196/annals.1346.020
  37. Teitelbaum, S.L., and Ross, F.P. (2003). Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 3, 638-649
  38. Thompson, C.B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456-1462 https://doi.org/10.1126/science.7878464
  39. Wang, Z.B., Liu, Y.Q., and Cui, Y.F. (2005). Pathways to caspase activation. Cell Biol. Int. 29, 489-496 https://doi.org/10.1016/j.cellbi.2005.04.001
  40. Weinstein, R.S., Chen, J.R., Powers, C.C., Stewart, S.A., Landes, R.D., Bellido, T., Jilka, R.L., Parfitt, A.M., and Manolagas, S.C. (2002). Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J. Clin. Invest. 109, 1041-1048 https://doi.org/10.1172/JCI0214538
  41. Yang, J., Liu, X., Bhalla, K., Kim, C.N., Ibrado, A.M., Cai, J., Peng, T.I., Jones, D.P., and Wang, X. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-1132 https://doi.org/10.1126/science.275.5303.1129