Molecular Systematics of the Genus Megoura (Hemiptera: Aphididae) Using Mitochondrial and Nuclear DNA Sequences

  • Kim, Hyojoong (Program in Entomology, School of Agricultural Biotechnology and Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Lee, Seunghwan (Program in Entomology, School of Agricultural Biotechnology and Research Institute for Agriculture and Life Science, Seoul National University)
  • 투고 : 2007.10.11
  • 심사 : 2007.12.20
  • 발행 : 2008.06.30

초록

To construct the molecular systematics of the genus Megoura (Hemiptera: Aphididae), DNA based-identification was performed using four mitochondrial and three nuclear DNA regions: partial cytochrome c oxidase I (COI), partial tRNA-leucine + cytochrome c oxidase II (tRNA/COII), cytochrome b (CytB), partial 12S rRNA + tRNA-valine + 16S rRNA (12S/16S), elongation factor-1 alpha ($EF1{\alpha}$), and the internal transcribed spacers 1 and 2 (ITS1, ITS2). Pairwise sequence divergences between taxa were compared, and phylogenetic analyses were performed based on each DNA region separately, and the combined datasets. COI, CytB, $EF1{\alpha}$, ITS1, and ITS2 were relatively effective in determining species and resolving their relationships. By contrast, the sequences of tRNA/COII and 12S/16S were not able to separate the closely related species. CytB and $EF1{\alpha}$ gave better resolution with higher average sequence divergences (4.7% for CytB, 5.2% for $EF1{\alpha}$). The sequence divergence of COI (3.0%) was moderate, and those of the two ITS regions (1.8% for ITS1, 2.0% for ITS2) were very low. Phylogenetic trees were constructed by minimum evolution, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses. The results indicated that the phylogenetic relationships between Megoura species were associated with their host preferences. Megoura brevipilosa and M. lespedezae living on Lespedeza were closely related, and M. nigra, monophagous on Vicia venosa, was rather different from M. crassicauda, M. litoralis, and M. viciae, which are oligophagous on Lathyrus and Vicia. The three populations of M. crassicauda formed a clade separated from M. litoralis and M. viciae. Nevertheless M. litoralis and M. viciae, which are morphologically similar, were not separated due to negligible sequence divergence. We discuss the phylogenetic relationships of the Megoura, and the usefulness of the seven DNA regions for determining the species level phylogeny of aphids.

키워드

과제정보

연구 과제번호 : Construction of the DNA barcode system for the conservation and management of Korean insect fauna

참고문헌

  1. Blackman, R.L., and Eastop, V.F. (2000). Aphids on the World's Crops: An Identification and Information Guide, 2nd eds (Chichester, John Wiley & Sons Ltd.)
  2. Brower, A.V.Z. (2006). Problems with DNA barcodes for species delimitation: 'ten species' of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae). Systematics and Biodiversity 4, 127-132 https://doi.org/10.1017/S147720000500191X
  3. Bull, N.J., Schwarz, M.P., and Cooper, S.J.B. (2003). Phylogenetic divergence of the Australian allodapine bees (Hymenoptera : Apidae). Mol. Phylogenet. Evol. 27, 212-222 https://doi.org/10.1016/S1055-7903(02)00402-5
  4. Bulman, S.R., Stufkens, M.A.W., Eastop, V.F., and Teulon, D.A.J. (2005). Rhopalosiphum aphids in New Zealand. II. DNA sequences reveal two incompletely described species. NZ J. Zool. 32, 37-45 https://doi.org/10.1080/03014223.2005.9518396
  5. Castresana, J. (2002). GBLOCLKS: selection of conserved blocks from multiple alignments for their use in phylogenetic analysis (Copyrighted by J. Castresana, EMBL)
  6. Cho, S.W., Mitchell, A., Regier, J.C., Mitter, C., Poole, R.W., Friedlander, T.P., and Zhao, S.W. (1995). A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1-alpha recovers morphology-based tree for heliothine moths. Mol. Biol. Evol. 12, 650-656
  7. Crozier, R.H., Dobric, N., Imai, H.T., Graur, D., Cornuet, J.M., and Taylor, R.W. (1995). Mitochondrial-DNA sequence evidence on the phylogeny of Australian jack-jumper ants of the Myrmecia pilosula complex. Mol. Phylogenet. Evol. 4, 20-30 https://doi.org/10.1006/mpev.1995.1003
  8. Damgaard, J., and Sperling, F.A.H. (2001). Phylogeny of the water strider genus Gerris Fabricius (Heteroptera: Gerridae) based on COI mtDNA, EF-1 nuclear DNA and morphology. Systematic Entomology 26, 241-254 https://doi.org/10.1046/j.1365-3113.2001.00141.x
  9. Djernaes, M., and Damgaard, J. (2006). Exon-intron structure, paralogy and sequenced regions of elongation factor-1 alpha in Hexapoda. Arthropod Systematics & Phylogeny 64, 45-52
  10. Farris, J.S., Kallersjo, M., Kluge, A.G., and Bult, C. (1994). Testing significance of incongruence. Cladistics-the International Journal of the Willi Hennig Society 10, 315-319 https://doi.org/10.1111/j.1096-0031.1994.tb00181.x
  11. Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294-299
  12. Friedlander, T.P., Regier, J.C., and Mitter, C. (1992). Nuclear gene-sequences for higher level phylogenetic analysis - 14 promising candidates. Systematic Biology 41, 483-490 https://doi.org/10.1093/sysbio/41.4.483
  13. Friedlander, T.P., Regier, J.C., and Mitter, C. (1994). Phylogenetic information content of five nuclear gene sequences in animals: Initial assessment of character sets from concordance and divergence studies. Systematic Biology 43, 511-525 https://doi.org/10.1093/sysbio/43.4.511
  14. Friedlander, T.P., Regier, J.C., and Mitter, C. (1997). Initial assessment of character sets from five nuclear gene sequences in animals. In Biodiversity II, M.L. Reaka-Kudla, D.E. Wilson, and E.O. Wilson, eds. (Washington, D.C., USA: Joseph Henry Press), pp. 301-320
  15. Han, H.Y., and Ro, K.E. (2005). Molecular phylogeny of the superfamily Tephritoidea (Insecta: Diptera): new evidence from the mitochondrial 12S, 16S, and COII genes. Mol. Phylogenet. Evol. 34, 416-430 https://doi.org/10.1016/j.ympev.2004.10.017
  16. Harry, M., Solignac, M., and Lachaise, D. (1998). Molecular evidence for parallel evolution of adaptive syndromes in figbreeding Lissocephala (Drosophilidae). Mol. Phylogenet. Evol. 9, 542-551 https://doi.org/10.1006/mpev.1998.0508
  17. Hebert, P.D.N., Cywinska, A., Ball, S.L., and DeWaard, J.R. (2003). Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B. Biol. Sci. 270, 313-321
  18. Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., and Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 101, 14812-14817
  19. Hebert, P.D.N., Ratnasingham, S., and deWaard, J.R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B. Biol. Sci. 270, S96-S99
  20. Heie, O.E. (1994). The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. V. Family Aphididae. Part 2 of tribe Macrosiphini of subfamily Aphidinae. (Klampenborg, Scandinavian Science Press Ltd.)
  21. Heie, O.E. (1995). The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. VI. Family Aphididae. Part 3 of tribe Macrosiphini of subfamily Aphidinae, and family Lachninae. (Klampenborg, Scandinavian Science Press Ltd.)
  22. Hille Ris Lambers, D. (1965). On some Japanses Aphididae (Homoptera). Tijdschrft voor enomologie, Dell 108, AFL 7, 189-203
  23. Hillis, D.M., and Dixon, M.T. (1991). Ribosomal DNA - molecular evolution and phylogenetic inference. Q. Rev. Biol. 66, 411-453 https://doi.org/10.1086/417338
  24. Hoy, M.A. (1994). Chapter13. Insect molecular systematics and evolution. In Insect Molecular Genetics (San Diego, USA: Academic Press Inc.), pp. 337-379
  25. Jermiin, L.S., and Crozier, R.H. (1994). The cytochrome b region in the mitochondrial DNA of the ant Tetraponera rufoniger: sequence divergence in Hymenoptera may be associated with nucleotide content. J. Mol. Evol. 38, 282-294
  26. Ji, Y.J., Zhang, D.X., and He, L.J. (2003). Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Mol. Ecol. Notes 3, 581-585 https://doi.org/10.1046/j.1471-8286.2003.00519.x
  27. Jousselin, E., van Noort, S., and Greeff, J.M. (2004). Labile male morphology and intraspecific male polymorphism in the Philotrypesis fig wasps. Mol. Phylogenet. Evol. 33, 706-718 https://doi.org/10.1016/j.ympev.2004.08.008
  28. Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120 https://doi.org/10.1007/BF01731581
  29. Kumar, S., Tamura, K., and Nei, M. (2004). MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5, 150-163 https://doi.org/10.1093/bib/5.2.150
  30. Lee, S., Holman, J., and Havelka, J. (2002). Taxonomic revision of the genus Megoura Buckton (Hemiptera: Aphididae) from the Korean Peninsula with the description of a new species and a key to the world species. Proceedings of the Entomological Society of Washington 104, 447-457
  31. Mezghani, M., Makni, H., Pasteur, N., Navajas, M., and Marrakchi, M. (2002). Species distinction and population structure in Mayetiola species (Diptera: cecidomyiidae) based on nuclear and mitochondrial sequences. International Journal of Dipterological Research 13, 93-107
  32. Miyazaki, M. (1971). A revision of the tribe Macrosiphini of Japan (Homoptera: Aphididae: Aphidinae). Insecta Matsumurana 34, 1-247
  33. Moran, N.A., Kaplan, M.E., Gelsey, M.J., Murphy, T.G., and Scholes, E.A. (1999). Phylogenetics and evolution of the aphid genus Uroleucon based on mitochondrial and nuclear DNA sequences. Systematic Entomology 24, 85-93 https://doi.org/10.1046/j.1365-3113.1999.00076.x
  34. Nazari, V., Zakharov, E.V., and Sperling, F.A.H. (2007). Phylogeny, historical biogeography, and taxonomic ranking of Parnassiinae (Lepidoptera, Papilionidae) based on morphology and seven genes. Mol. Phylogenet. Evol. 42, 131-156 https://doi.org/10.1016/j.ympev.2006.06.022
  35. Nei, M. (1991). Relative efficiencies of different tree-making methods for molecular data. In Phylogenetic Analysis of DNA sequences. M.M. Miyamoto, and J. Cracraft, eds. (New York, USA: Oxford Univ. Press), pp. 90-128
  36. Nei, M. (1996). Phylogenetic analysis in molecular evolutionary genetics. Annu. Rev. Genet. 30, 371-403 https://doi.org/10.1146/annurev.genet.30.1.371
  37. Normark, B.B. (1996). Phylogeny and evolution of parthenogenetic weevils of the Aramigus tessellatus species complex (Coleoptera: Curculionidae: Naupactini): Evidence from mitochondrial DNA sequences. Evolution 50, 734-745 https://doi.org/10.2307/2410846
  38. Normark, B.B. (1999). Evolution in a putatively ancient asexual aphid lineage: Recombination and rapid karyotype change. Evolution 53, 1458-1469 https://doi.org/10.2307/2640892
  39. Normark, B.B. (2000). Molecular systematics and evolution of the aphid family Lachnidae. Mol. Phylogenet. Evol. 14, 131-140 https://doi.org/10.1006/mpev.1999.0699
  40. Ortiz-Rivas, B., Moya, A., and Martinez-Torres, D. (2004). Molecular systematics of aphids (Homoptera: Aphididae): new insights from the long-wavelength opsin gene. Mol. Phylogenet. Evol. 30, 24-37 https://doi.org/10.1016/S1055-7903(03)00155-6
  41. Palumbi, S.R. (1996). Nucleic acids II: The polymerase chain reaction. In Molecular Systematics. D.M. Hillis, ed. (Sunderland, UK: Sinauer Press), pp. 205-247
  42. Park, M.H., Sim, C.J., Baek, J., and Min, G.S. (2007). Identification of genes suitable for DNA barcoding of morphologically indistinguishable Korean Halichondriidae sponges. Mol. Cells 23, 220-227
  43. Raboudi, F., Mezghani, M., Makni, H., Marrakchi, M., Rouault, J.D., and Makni, M. (2005). Aphid species identification using cuticular hydrocarbons and cytochrome b gene sequences. Journal of Applied Entomology 129, 75-80 https://doi.org/10.1111/j.1439-0418.2005.00934.x
  44. Reed, R.D., and Sperling, F.A.H. (1999). Interaction of process partitions in phylogenetic analysis: an example from the swallowtail butterfly genus Papilio. Mol. Biol. Evol. 16, 286-297 https://doi.org/10.1093/oxfordjournals.molbev.a026110
  45. Remaudiere, G., and Remaudiere, M. (1997). Catalogue des Aphididae du Monde. Homoptera Aphidoidea; Catalogue of the world's Aphididae (Paris, INRA)
  46. Ronquist, F., and Huelsenbeck, J.P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574 https://doi.org/10.1093/bioinformatics/btg180
  47. Simmons, R.B., and Weller, S.J. (2001). Utility and evolution of cytochrome b in insects. Mol. Phylogenet. Evol. 20, 196-210 https://doi.org/10.1006/mpev.2001.0958
  48. Simon, C., Franke, A., and Martin A. (1991). The polymerase chain reaction: DNA extraction and amplication. In Molecular Techniques in Taxonomy, G.M., H. ed. (Berlin, Germany: Springer), p. 410
  49. Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers. Ann. Entomol. Soc. Am. 87, 651-701 https://doi.org/10.1093/aesa/87.6.651
  50. Stern, D.L. (1994). A Phylogenetic analysis of soldier evolution in the aphid family hormaphididae. Proc. R. Soc. Lond. B. Biol. Sci. 256, 203-209
  51. Stern, D.L. (1998). Phylogeny of the tribe Cerataphidini (Homoptera) and the evolution of the horned soldier aphids. Evolution 52, 155-165 https://doi.org/10.2307/2410930
  52. Stern, D.L., Aoki, S., and Kurosu, U. (1997). Determining aphid taxonomic affinities and life cycles with molecular data: a case study of the tribe Cerataphidini (Hormaphididae: Aphidoidea: Hemiptera). Systematic Entomology 22, 81-96 https://doi.org/10.1046/j.1365-3113.1997.d01-20.x
  53. Swofford, D.L. (1998). PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods) (Sunderland, MA, Sinauer Associates)
  54. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-4882
  55. von Dohlen, C.D., and Moran, N.A. (2000). Molecular data support a rapid radiation of aphids in the Cretaceous and multiple origins of host alternation. Biol. J. Linn. Soc. 71, 689-717 https://doi.org/10.1111/j.1095-8312.2000.tb01286.x
  56. von Dohlen, C.D., and Teulon, D.A.J. (2003). Phylogeny and historical biogeography of New Zealand indigenous aphidini aphids (Hemiptera, Aphididae): An hypothesis. Ann. Entomol. Soc. Am. 96, 107-116 https://doi.org/10.1603/0013-8746(2003)096[0107:PAHBON]2.0.CO;2
  57. von Dohlen, C.D., Kurosu, U., and Aoki, S. (2002). Phylogenetics and evolution of the eastern Asian-eastern North American disjunct aphid tribe, Hormaphidini (Hemiptera : Aphididae). Mol. Phylogenet. Evol. 23, 257-267 https://doi.org/10.1016/S1055-7903(02)00025-8
  58. von Dohlen, C.D., Rowe, C.A., and Heie, O.E. (2006). A test of morphological hypotheses for tribal and subtribal relationships of Aphidinae (Insecta : Hemiptera : Aphididae) using DNA sequences. Mol. Phylogenet. Evol. 38, 316-329 https://doi.org/10.1016/j.ympev.2005.04.035
  59. Yoo, H.S., Eah, J.Y., Kim, J.S., Kim, Y.J., Min, M.S., Paek, W.K., Lee, H., and Kim, C.B. (2006). DNA barcoding Korean birds. Mol. Cells 22, 323-327
  60. Zhang, D.X., and Hewitt, G.M. (1997). Assessment of the universality and utility of a set of conserved mitochondrial COI primers in insects. Insect Mol. Biol. 6, 143-150 https://doi.org/10.1111/j.1365-2583.1997.tb00082.x