Comparison of Molecular Linkage Maps and QTLs for Morphological Traits in Two Reciprocal Backcross Populations of Rice

  • Qiao, Yongli (Department of Plant Science, Seoul National University) ;
  • Jiang, Wenzhu (Department of Plant Science, Seoul National University) ;
  • Rahman, Md Lutfor (Department of Plant Science, Seoul National University) ;
  • Chu, Sang-Ho (Department of Plant Science, Seoul National University) ;
  • Piao, Rihua (Department of Plant Science, Seoul National University) ;
  • Han, Longzhi (Key Laboratory of Crop Germplasm Resources and Biotechnology, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences) ;
  • Koh, Hee-Jong (Department of Plant Science, Seoul National University)
  • Received : 2007.10.08
  • Accepted : 2007.12.05
  • Published : 2008.05.31

Abstract

Comparison of maps and QTLs between populations may provide us with a better understanding of molecular maps and the inheritance of traits. We developed and used two reciprocal $BC_1F_1$ populations, IP/DS//IP and IP/DS//DS, for QTL analysis. DS (Dasanbyeo) is a Korean tongil-type cultivar (derived from an indica x japonica cross and similar to indica in its genetic make-up) and IP (Ilpumbyeo) is a Korean japonica cultivar. We constructed two molecular linkage maps corresponding to each backcross population using 196 markers for each map. The length of each chromosome was longer in the IP/DS//IP population than in the IP/DS//DS population, indicating that more recombinants were produced in the IP/DS//IP population. Distorted segregation was observed for 44 and 19 marker loci for the IP/DS//IP and IP/DS//DS populations, respectively; these were mostly skewed in favor of the indica alleles. A total of 36 main effect QTLs (M-QTLs) and 15 digenic epistatic interactions (E-QTLs) were detected for the seven traits investigated. The phenotypic variation explained (PVE) by M-QTLs ranged from 3.4% to 88.2%. Total PVE of the M-QTLs for each trait was significantly higher than that of the E-QTLs. The total number of M-QTLs identified in the IP/DS//IP population was higher than in the IP/DS//DS population. However, the total PVE by the M-QTLs and E-QTLs together for each trait was similar in the two populations, suggesting that the two $BC_1F_1$ populations are equally useful for QTL analysis. Maps and QTLs in the two populations were compared. Eleven new QTLs were identified for SN, SF, GL, and GW in this study, and they will be valuable in marker-assisted selection, particularly for improving grain traits in tongil-type varieties.

Keywords

References

  1. Antonio, B.A., Inoue, T., Kajiya, H., Nagamura, Y., and Murata, N. (1996). Comparison of genetic distance and order of DNA markers in five populatinons of rice. Genome 39, 946-956 https://doi.org/10.1139/g96-119
  2. Cai, H.W., and Morishima, H. (2002). QTL clusters reflect character associations in wild and cultivated rice. Theor. Appl. Genet. 104, 1217-1228 https://doi.org/10.1007/s00122-001-0819-7
  3. Chaib, J., Lecomte, L., Buret, M., and Causse, M. (2006). Stability over genetic background, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor. Appl. Genet. 112, 934-944 https://doi.org/10.1007/s00122-005-0197-7
  4. Chetelat, R.T., Meglic, V., and Cisneros, P. (2000). A genetic map of tomato based on BC1 Lycopersicon esculentum x Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genome. Genetics 154, 857-867
  5. Cho, Y.G., Eun, M.Y., McCouch, S.R., and Chae, Y.A. (1994). The semidwarf gene, sd-1, of rice. II. Molecular mapping and marker-assisted selection. Theor. Appl. Genet. 89, 54-59
  6. Chung, G.S., and Heu, M.H. (1991). Improvement of Tongiltype rice cultivars from indica/japonica hybridization in Korea, In Biotechnology in Agriculture and Forestry 14, Y.P.S. Bajaj (ed.), (Springer-Verlag), pp. 105-112
  7. Grandillo, S., and Tanksley, S.D. (1996). Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between Lesculentum and L.pimoinellifolium. Theor. Appl. Genet. 92, 957-965 https://doi.org/10.1007/BF00224035
  8. Harushima, Y., Nakagahra, M., Yano, M., Sasaki, M., Sasaki, T., and Kurata, N. (2002). Diverse variation of reproductive barriers in three intraspecific rice crosses. Genetics 160, 313-322
  9. He, P., Li, J.Z., Zheng, X.W., Shen, L.S., Lu, C.F., Chen, Y., and Zhu, L.H. (2001). Comparison of molecular linkage maps and agronomic trait loci between DH and RIL populations derived from the same rice cross. Crop Sci. 41, 1240-1246 https://doi.org/10.2135/cropsci2001.4141240x
  10. Hittalmani, S., Huang, N., Courtois, B., Venuprasad, R., Shashidhar, H.E., Zhuang, J.Y., Zheng, K.L., Liu, G.F., Wang, G.C., Sidhu, J.S., et al. (2003). Identification of QTL for growth and grain yield-related traits in rice across nine locations of Asia. Theor. Appl. Genet. 107, 679-690 https://doi.org/10.1007/s00122-003-1269-1
  11. Huang, N., Parco, A., Mew, T., Magpantay, G., McCouch, S., Guiderdoni, E., Xu, J., Subudhi, P., Angeles, Enrique R., and Khush Gurdev, S. (1997). RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Mol. Breeding 3, 105-113 https://doi.org/10.1023/A:1009683603862
  12. Ikehashi, H., and Araki, H. (1986). Genetics of F1 sterility in remote crosses of rice. In Rice genetics IRRI, ed. IRRI, (Manila, Philippines), pp. 119-130
  13. IRRI (1988). Standard evaluation system for rice. International rice research institute, Manila, Philippines
  14. Kobayashi, S., Fukuta, Y., Sato, T., Osaki, M., and Khush, G.S. (2003). Molecular marker dissection of rice (Oryza sativa L.) plant architecture under temperate and tropical climates. Theor. Appl. Genet. 107, 1350-1356 https://doi.org/10.1007/s00122-003-1388-8
  15. Kosambi, D.D. (1944). The estimation of map distances from recombination values. Ann. Eugen 12, 172-175
  16. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., and Newburg, L. (1987). MAPMAKER, an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174-181 https://doi.org/10.1016/0888-7543(87)90010-3
  17. Lark, K.G., Chase, K., Adler, F., Mansur, L.M., and Orf, J.H. (1995). Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc. Natl. Acad. Sci. USA 92, 4656-4660
  18. Li, Z., Pinson, S.R., Paterson, A.H., Park, W.D., and Stansel, J.W. (1997). Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice population. Genetics 145, 1139-1148
  19. Li, Z., Luo, L., Mei, H.W., Wang, D.L., Shu, Q. Y., Tabien, R., Zhong, D.B., Ying, C.S., Stansel, J.W., Khush, G.S., et al. (2001). Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158, 1737-1753
  20. Li, J.M., Xiao, J.H., Grandillo, S., Jiang, L.Y., and Wan, Y.H. (2004). QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47, 697-704 https://doi.org/10.1139/g04-029
  21. Lin, S.Y., IkehashiI, H., Yanagihara, S., and Kawashima, K. (1992). Segregation distortion via male gametes in hybrids between Indica and Japonica or wide compatibility varieties of rice. Theor. Appl. Genet. 84, 812-818
  22. Lincoln, S., Daly, M., and Lander, E.S. (1992). Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, 2nd eds. (Massachusetts, USA: Whitehead Institute, Cambridge)
  23. Liu, K.D., Wang, J., Li, H.B., Xu, C.G., Liu, A.M., Li, X.H., and Zhang, Q. (1997). A genome-wide analysis of wide compatibility in rice and the precise location of the S5 locus in the molecular map. Theor. Appl. Genet. 95, 809-814 https://doi.org/10.1007/s001220050629
  24. Lu, C., Shen, L., Tan, Z., Xu, Y., He, P., Chen, Y., and Zhu, L. (1996). Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor. Appl. Genet. 93, 1211-1217 https://doi.org/10.1007/BF00223452
  25. Ma, J., SanMiguel, P., Lai, J., Messing, J., and Bennetzen, J.L. (2005). DNA rearrangement in orthologous Orp regions of the maize, rice and sorghum genomes. Genetics 170, 1209-1220 https://doi.org/10.1534/genetics.105.040915
  26. Maughan, P.J., Saghai Maroof, M.A., and Buss, G.R. (1996). Molecular-marker analysis of seed-weight, genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor. Appl. Genet. 93, 574-579 https://doi.org/10.1007/BF00417950
  27. McCouch, S.R., Cho, Y.G., Yano, M., Paul, E., and Kinoshita, T. (1997). Report on QTL nomenclature. Rice Gente. Newslett. 14, 11-13
  28. Mei, H.W., Li, Z.K., Shu, Q.Y., Guo, L.B., Wang, Y.P., Yu, X.Q., Ying, C.S., and Luo, L.J. (2005). Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor. Appl. Genet. 110, 649-659 https://doi.org/10.1007/s00122-004-1890-7
  29. Moncada, P., Martinez, C.P., Borrero, J., Châtel, M., Gauch, H., Guimaraes, E.P., Tohmé, J., and McCouch, S.R. (2001). Quantitative trait loci for yield and yield components in an Oryza sativa (Oryza rufipogon $BC_2F_2$ population evaluated in an upland environment. Theor. Appl. Genet. 102, 41-52 https://doi.org/10.1007/s001220051616
  30. Murray, M.G., and Thompson, W.F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321-4325 https://doi.org/10.1093/nar/8.19.4321
  31. Nelson, J.C. (1997). QGENE, software for marker-based genome analysis and breeding. Mol. Breed. 3, 239-245 https://doi.org/10.1023/A:1009604312050
  32. Oka, H.I. (1988). Origin of cultivated rice. Japanese Scientific Society Press/Elsevier, Tokyo, Amsterdam
  33. Paterson, A.H., Bowers, J.E., Burow, M.D., Draye, X., Elsik, C.G., Jiang C.X., Katsar, C.S., Lan, T.H., Lin, Y.R., Ming, R., et al. (2000). Comparative genomics of plant chromosomes. Plant Cell 12, 1523-1539 https://doi.org/10.1105/tpc.12.9.1523
  34. Rabiei, B., Valizadeh, M., Ghareyazie, B., Moghaddam, M., and Ali, A.J. (2004). Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR markers. Euphytica 137, 325-332 https://doi.org/10.1023/B:EUPH.0000040452.76276.76
  35. Rahman, L., Chu, S.H., Choi, M.S., Qiao, Y.L., Jiang, W., Piao, R., Khanam, S., Cho, Y.I., Jeung, J.U., Jena, K., et al. (2007). Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta. Mol. Cells 24, 16-26
  36. Redona, E.D., and Mackill, D.J. (1998). Quantitative trait locus analysis for rice panicle and grain characteristics. Theor. Appl. Genet. 96, 957-963 https://doi.org/10.1007/s001220050826
  37. Septiningsih, E.M., Prasetiyono, J., Lubis, E., Tai, T.H., Tjubaryat, T., Moeljopawiro, S., and McCouch, S.R. (2003). Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative Orufipogon. Theor. Appl. Genet. 107, 1419-1432 https://doi.org/10.1007/s00122-003-1373-2
  38. Song, X., Qiu, S.Q., Xu, C.G., Li, X.H., and Zhang, Q.F. (2005). Genetic dissection of embryo sac fertility, pollen fertility, and their contributions to spikelet fertility of intersubspecific hybrids in rice. Theor. Appl. Genet. 110, 205-211 https://doi.org/10.1007/s00122-004-1798-2
  39. Song, X.J., Huang, W., Shi, M., Zhu, M.Z., and Lin, H.X. (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39, 623-630 https://doi.org/10.1038/ng2014
  40. Tan, Y.F., Xing, Y.Z., Li, J.X., Yu, S.B., Xu, C.G., and Zhang, Q. (2000). Genetic bases of appearance quality of rice grains in Shanyou63, an elite rice hybrid. Theor. Appl. Genet. 101, 823-829 https://doi.org/10.1007/s001220051549
  41. Tanksley, S.D. (1993). Mapping polygenes. Annu. Rev. Genet. 27, 205-233 https://doi.org/10.1146/annurev.ge.27.120193.001225
  42. Tanksley, S.D., and McCouch, S.R. (1997). Seed banks and molecular maps, unlocking genetic potential from the wild. Science 277, 1063-1066 https://doi.org/10.1126/science.277.5329.1063
  43. Thomson, M.J., Tai, T.H., McClung, A.M., Lai, X.H., Hinga, M.E., Lobos, K.B., Xu, Y., Martinez, C.P., and McCouch, S.R. (2003). Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor. Appl. Genet. 107, 479-493 https://doi.org/10.1007/s00122-003-1270-8
  44. Wan, X.Y., Wan, J.M., Jiang, L., Wang, J.K., Zhai, H.Q., Weng, J.F., Wang, H.L., Lei, C.L., Wang, J.L., Zhang, X., et al. (2006). QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor. Appl. Genet. 112, 1258-1270 https://doi.org/10.1007/s00122-006-0227-0
  45. Wang, J., Liu, K.D., Xu, C.G., Li, X.H., and Zhang, Q. (1998). The high level of wide compatibility of variety Dular has a complex genetic basis. Theor. Appl. Genet. 97, 407-412 https://doi.org/10.1007/s001220050910
  46. Wang, D.L., Zhu, J., Li, Z., and Paterson, A.H. (1999). Mapping QTLs with epistatic effects and QTL x environment interactions by mixed linear model approaches. Theor. Appl. Genet. 99, 1255-1264 https://doi.org/10.1007/s001220051331
  47. Xing, Z., Tan, F., Hua, P., Sun, L., Xu, G., and Zhang, Q. (2002). Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor. Appl. Genet. 105, 248-257 https://doi.org/10.1007/s00122-002-0952-y
  48. Xiong, L.Z., Liu, K.D., Dai, X.K., Xu, C.G., and Zhang, Q. (1999). Identification of genetic factors controlling domestication- related traits of rice using an F2 population of a cross between Oryza sativa and O rufipogon. Theor. Appl. Genet. 98, 243-251 https://doi.org/10.1007/s001220051064
  49. Xu, Y., Zhu, L., Xiao, J., Huang, N., and McCouch, S.R. (1997). Chromosomal regions associated with segregation distortion of molecular markers in $F_2$, backcross, doubled haploid, and recombinant inbred populations in rice. Mol. Genet. Genomics 253, 535-545 https://doi.org/10.1007/s004380050355
  50. Yanagihara, S., McCouch, S.R., Ishikawa, K., Ogi, Y., Maruyama, K., and Ikehashi, H. (1995). Molecular analysis of the inheritance of the S-5 locus, conferring wide compatibility in indica/japonica hybrids of rice (O. sativa L.). Theor. Appl. Genet. 90, 182-188
  51. Yoon, D.B., Kang, K.H., Kim, H.J., Ju, H.G., Kwon, S.J., Suh, J.P., Jeong, O.Y., and Ahn, S.N. (2006). Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo. Theor. Appl. Genet. 112, 1052-1062 https://doi.org/10.1007/s00122-006-0207-4
  52. Yu, S.B., Li, J.X., Xu, C.G., Tan, Y.F., Li, X.H., and Zhang, Q. (2002). Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor. Appl. Genet. 104, 619-625 https://doi.org/10.1007/s00122-001-0772-5
  53. Zhuang, J.Y., Lin, H.X., Hittamani, S., Huang, N., and Zheng, K.L. (1997). Analysis of QTLⅹenvironment interaction for yield components and plant height in rice. Theor. Appl. Genet. 95, 799-808 https://doi.org/10.1007/s001220050628