DOI QR코드

DOI QR Code

Characterization of the molten globule conformation of V26A ubiquitin by far-UV circular dichroic spectroscopy and amide hydrogen/deuterium exchange

  • Park, Soon-Ho (Department of Biochemistry and Molecular Biology, College of Dentistry and Research Institute of Oral Sciences, Kangnung National University)
  • Published : 2008.01.31

Abstract

The molten globular conformation of V26A ubiquitin (valine to alanine mutation at residue 26) was studied by nuclear magnetic resonance spectroscopy in conjunction with amide hydrogen/deuterium exchange. Most of the amide protons that are involved in the native secondary structures were observed to be protected in the molten globule state with the protection factors from 1.2 to 6.7. These protection factors are about 2 to 6 orders of magnitude smaller than those of the native state. These observations indicate that V26A molten globule has native-like backbone structure with marginal stability. The comparison of amide protection factors of V26A ubiquitin molten globule state with those of initial collapsed state of the wild type ubiquitin suggests that V26A ubiquitin molten globule state is located close to unfolded state in the folding reaction coordinate. It is considered that V26A ubiquitin molten globule is useful model to study early events in protein folding reaction.

Keywords

References

  1. Kim, P. S. and Baldwin, R. L. (1982) Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu. Rev. Biochem. 51, 459-489. https://doi.org/10.1146/annurev.bi.51.070182.002331
  2. Kim, P. S. and Baldwin, R. L. (1990) Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631-660. https://doi.org/10.1146/annurev.bi.59.070190.003215
  3. Matthews, C. R. (1993) Pathways of protein folding. Annu. Rev. Biochem. 62, 653-683. https://doi.org/10.1146/annurev.bi.62.070193.003253
  4. Ptitsyn, O. B. (1995) Molten globule and protein folding. Adv. Protein Chem. 47, 83-229. https://doi.org/10.1016/S0065-3233(08)60546-X
  5. Elove, G. A., Chaffotte, A. F., Roder, H. and Goldberg, M. E. (1992) Early steps in cytochrome c folding probed by time-resolved circular dichroism and fluorescence spectroscopy. Biochemistry 31, 6876-6883. https://doi.org/10.1021/bi00145a003
  6. Park, S.-H., O'Neil, K. T. and Roder, H. (1997) An early intermediate in the folding reaction of the B1 domain of protein G contains a native-like core. Biochemistry 36, 14277-14283. https://doi.org/10.1021/bi971914+
  7. Park, S.-H., Shastry, R. M. C. and Roder, H. (1999) Folding dynamics of the B1 domain of protein G explored by ultrarapid mixing. Nat. Struct. Biol. 6, 943-947. https://doi.org/10.1038/13311
  8. Khorasanizadeh, S., Peters, I. D. and Roder, H. (1996) Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nat. Struct. Biol. 3, 193-205. https://doi.org/10.1038/nsb0296-193
  9. Larios, E., Li, J. S., Schulten, K., Kihara, H. and Gruebele, M. (2004) Multiple probes reveal a native-like intermediate during low-temperature refolding of ubiquitin. J. Mol. Biol. 340, 115-125. https://doi.org/10.1016/j.jmb.2004.04.048
  10. Went, H. M., Benitez-Cordoza, C. G. and Jackson, S. E. (2004) Is an intermediate state populated on the folding pathway of ubiquitin? FEBS Lett. 567, 333-338. https://doi.org/10.1016/j.febslet.2004.04.089
  11. Arai, M. and Kuwajima, K. (1996) Rapid formation of a molten globule intermediate in refolding of ${\alpha}-lactalbumin$. Fold. Des. 1, 275-287. https://doi.org/10.1016/S1359-0278(96)00041-7
  12. Arai, M., Ito, K., Inobe, M., Nakao, M., Maki, K., Kamagata, H., Kihara, H., Amemiya, Y. and Kuwajima, K. (2002) Fast compaction of alpha-lactoalbumin during folding studied by stopped-flow X-ray scattering. J. Mol. Biol. 321, 121-132. https://doi.org/10.1016/S0022-2836(02)00566-1
  13. Forge, V., Wijesinha, R. T., Balbach, J., Brew, K., Robinson, C. V., Redfield, C. and Dobson, C. M. (1999) Rapid collapse and slow structural reorganisation during the refolding of bovine alpha-lactalbumin. J. Mol. Biol. 288, 673-688. https://doi.org/10.1006/jmbi.1999.2687
  14. Hughson, F. M., Wright, P. E. and Baldwin, R. L. (1990) Structural characterization of a partly folded apomyoglobin intermediate. Science 249, 1544-1548. https://doi.org/10.1126/science.2218495
  15. Jennings, P. A. and Wright, P. E. (1993) Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892-895. https://doi.org/10.1126/science.8235610
  16. Kuwajima, K. and Arai, M. (2000) The molten globule state: the physical picture and biological significance; in Mechanisms of Protein Folding, Pain, R. H. (ed.), pp. 138-174, Oxford University Press, New York, USA.
  17. Heidary, D. K., Gross, L. A., Roy, M. and Jennings, P. A. (1997) Evidence for an obligatory intermediate in the folding of $interleukin-1{\beta}$. Nat. Struct. Biol. 4, 725-731. https://doi.org/10.1038/nsb0997-725
  18. Kuwajima, K., Hiraoka, Y., Ikeguchi, M. and Sugai, S. (1985) Comparison of the transient folding intermediates in lysozyme and ${\alpha}$-lactalbumin. Biochemistry 24, 874-881. https://doi.org/10.1021/bi00325a010
  19. Mizuguchi, M., Arai, M., Ke, Y., Nitta, K. and Kuwajima, K. (1998) Equilibrium and kinetics of the folding of equine lysozyme studied by circular dichroism spectroscopy. J. Mol. Biol. 283, 265-277. https://doi.org/10.1006/jmbi.1998.2100
  20. Raschke, T. M. and Marqusee, S. (1997) The kinetic folding intermediate of ribonuclease H resembles the acid molten globule and partially unfolded molecules detected under native conditions. Nat. Struct. Biol. 4, 298-304. https://doi.org/10.1038/nsb0497-298
  21. Briggs, M. S. and Roder, H. (1992) Early hydrogen- bonding events in the folding reaction of ubiquitin. Proc. Natl. Acad. Sci. U.S.A. 89, 2017-2021. https://doi.org/10.1073/pnas.89.6.2017
  22. Crespo, M. D., Simpson, E. R. and Searle, M. S. (2006) Population of on-pathway intermediates in the folding of ubiquitin. J. Mol. Biol. 360, 1053-1056. https://doi.org/10.1016/j.jmb.2006.05.061
  23. Galdwin, S. T. and Evans, P. A. (1996) Structure of very early protection folding intermediates: new insights through a variant of hydrogen exchange labelling. Fold. Des. 1, 407-417. https://doi.org/10.1016/S1359-0278(96)00057-0
  24. Khorasanizadeh, S., Peters, I. D., Butt, T. R. and Roder, H. (1993) Stability and folding of a tryptophan-containing mutant of ubiquitin. Biochemistry 32, 7054-7063. https://doi.org/10.1021/bi00078a034
  25. Park, S.-H. (2004) Hydrophobic core variant ubiquitin forms a molten globule conformation at acidic pH. J. Biochem. Mol. Biol. 37, 676-683. https://doi.org/10.5483/BMBRep.2004.37.6.676
  26. Wilkinson, K. D. and Mayer, A. N. (1986) Alcohol-induced conformational changes of ubiquitin. Arch. Biochem. Biophys. 250, 390-399. https://doi.org/10.1016/0003-9861(86)90741-1
  27. Brutscher, B., Brüschweiler, R. and Ernst, R. R. (1997) Backbone dynamics and structural characterization of the partially folded A state of ubiquitin by $1^H$, $^{13}C$, and $^{15}N$ nulcear magnetic resonance spectroscopy. Biochemistry 36, 13043-13053. https://doi.org/10.1021/bi971538t
  28. Pan, Y. and Briggs, M. S. (1992) Hydrogen exchange in native and alcohol forms of ubiquitin. Biochemistry 31, 11405-11412. https://doi.org/10.1021/bi00161a019
  29. Greenfield, N. and Fasman, G. D. (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108-4116. https://doi.org/10.1021/bi00838a031
  30. Yang, J. T., Wu, C. S. and Martinez, H. M. (1986) Calculation of protein conformation from circular dichroism. Methods Enzymol. 130, 208-269. https://doi.org/10.1016/0076-6879(86)30013-2
  31. Went, H. M. and Jackson, S. E. (2005) Ubiquitin folds through a highly polarized transition state. Protein Eng. 18, 229-237. https://doi.org/10.1093/protein/gzi025
  32. Bai, Y., Milne, J. S. and Englander, S. W. (1993) Primary structure effects on peptide group exchange. Proteins: Struct. Funct. Genet. 17, 75-86. https://doi.org/10.1002/prot.340170110

Cited by

  1. Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR vol.25, pp.8, 2016, https://doi.org/10.1002/pro.2940