DOI QR코드

DOI QR Code

A novel CaAbsi1 gene induced by early-abiotic stresses in pepper

  • Published : 2008.01.31

Abstract

The full-length cDNA of CaAbsi1 encodes a presumptive protein of 134 amino acid residues that has homology to a putative zinc finger protein in its C-terminus. The deduced amino acid sequence has 50% homology to Oryza sativa NP001049-274, the function of which is unknown. Expression of CaAbsi1 was reduced in response to inoculation of non-host pathogens. On the other hand it was induced one hour after exposure to high concentrations of NaCl or mannitol, and six hours after transfer to low temperature. Induction also occurred in response to oxidative stress, methyl viologen, hydrogen peroxide and abscisic acid. Our results suggest that CaAbsi1 plays a role in multiple responses to wounding and abiotic stresses.

Keywords

References

  1. Cushman, J. C. and Bohnert, H. J. (2000) Genomic approaches to plant stress tolerance. Curr. Opin. Plant Biol. 3, 117-124. https://doi.org/10.1016/S1369-5266(99)00052-7
  2. Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi, K. and Shinozaki, K. (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr. Opin. Plant Biotech. 17, 113-122. https://doi.org/10.1016/j.copbio.2006.02.002
  3. Yamaguchi, K. and Shinozaki, K. (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stressresponsive promoters. Trends Plant Sci. 10, 88-94. https://doi.org/10.1016/j.tplants.2004.12.012
  4. Buchanan, C. D., Lim, S., Salzman, R. A., Kagiampakis, I., Morishige, D. T., Weers, B. D., Klein, R. R., Pratt, L. H., Cordonnier, M., Klein, P. E. and Mullet, J. E. (2005) Sorghum bicolor's transcriptome response to dehydration, high salinity and ABA. Plant Mol. Biol. 58, 699-720. https://doi.org/10.1007/s11103-005-7876-2
  5. Hasegawa, P. M., Bressan, R. A., Zhu, J. K. and Bohnert, H. J. (2000) Plant cellular and molecular responses to high salinity. Ann. Rev. Plant Physiol. Plant Mol. Biol. 51, 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
  6. Sangam, S., Jayasree, D., Reddy, K. J., Chari, P. V. B., Sreenivasulu, N. and Kavi Kishor, P. B. (2005) Salt tolerance in plants-transgenic approaches. J. Plant Biotechnol. 7, 1-5.
  7. Valliyodan, B. and Nguyen, H. T. (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biotech. 9, 189-195. https://doi.org/10.1016/j.pbi.2006.01.019
  8. Viswanathan, C. and Zhu, J. K. (2004) Molecular perspectives on cross-talk and specificity in abiotic stress signaling in plants. J. Exp. Bot. 55, 225-236. https://doi.org/10.1093/jxb/erh005
  9. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Tiwasaki, T., Hosokawa, D. and Shinozaki, K. (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acidregulated gene expression. Plant Cell 9, 1859-1868. https://doi.org/10.1105/tpc.9.10.1859
  10. Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3, 217-223. https://doi.org/10.1016/S1369-5266(00)80068-0
  11. Luchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27, 325-333. https://doi.org/10.1046/j.1365-313x.2001.01096.x
  12. Tran, L. S. P., Nakashima, K., Sakuma, Y., Simpson, S. D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive ciselement in the early responsive to dehydration stress 1 promoter. Plant Cell 16, 2481-2498. https://doi.org/10.1105/tpc.104.022699
  13. Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., van Arkel, G. and Pereira, A. (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16, 2463-2480. https://doi.org/10.1105/tpc.104.022897
  14. Vinocur, B. and Altman, A. (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr. Opin. Biotechnol. 16, 123-132. https://doi.org/10.1016/j.copbio.2005.02.001
  15. Takatsuji, H. (1998) Zinc-finger transcription factors in plants. Cell. Mol. Life Sci. 54, 582-596. https://doi.org/10.1007/s000180050186
  16. Lee, S. J., Lee, M. Y., Yi, S. Y., Oh, S. K., Choi, S. H., He, N. H., Choi, D., Min, B. W., Yang, S. G. and Han, C. H. (2002) PPI1: a novel pathogen-induced basic region-leucine zipper (bZIP) transcription factor from pepper. Mol. Plant-Microbe Interct. 15, 540-548. https://doi.org/10.1094/MPMI.2002.15.6.540
  17. Reymond, P., Weber, H., Damond, M. and Farmer, E. E. (2000) Differential gene expression in response to mechanicalwounding and insect feeding in Arabidopsis. Plant Cell 12, 707-719. https://doi.org/10.1105/tpc.12.5.707
  18. Ryan, C. A. (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochem. Biophys. Acta 1477, 112-121. https://doi.org/10.1016/S0167-4838(99)00269-1
  19. O'Donnell, P. J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H. M. O. and Bowles, D. J. (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274, 1914-1917. https://doi.org/10.1126/science.274.5294.1914
  20. Orozco-Cardenas, M. and Ryan, C. A. (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. U. S. A. 96, 6553-6557. https://doi.org/10.1073/pnas.96.11.6553
  21. Kim, S. H., Hong, J. K., Lee, S. C., Sohn, K. H., Jung, H. W. and Hwang, B. K. (2004) CAZFP1, Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen- induced early-defense gene in Capsicum annuum. Plant Mol. Biol. 55, 883-904. https://doi.org/10.1007/s11103-005-2151-0
  22. Oh, S. K., Yi, S. Y., Yu, S. H., Moon, J. S., Park, J. M. and Choi, D. (2006) CaWRKY2, a Chili pepper transcription factor, is rapidly induced by incompatible plant pathogens. Mol. Cells 22, 58-64.
  23. Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q. and Xiong, L. (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. U. S. A. 103, 12987-12992. https://doi.org/10.1073/pnas.0604882103
  24. Shinozaki, K., Yamaguchi, K. and Seki, M. (2003) Regulatory network of gene expression in the drought and cold stress. Curr. Opin. Plant Biol. 6, 410-417. https://doi.org/10.1016/S1369-5266(03)00092-X
  25. Bray, E. A. (1993) Molecular responses to water deficit. Plant Physiol. 103, 1035-1040. https://doi.org/10.1104/pp.103.4.1035
  26. Cohen, A. and Bray, E. A. (1990) Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid. Planta 182, 27-33.
  27. Mittler, R., Lam, E., Shulev, V. and Cohen, M. (1999) Signal controlling the expression of cytosolic ascorbate peroxidase during pathogen-induced programmed cell death in tobacco. Plant Mol. Biol. 39, 1025-1035. https://doi.org/10.1023/A:1006110223774
  28. Oh, S. K., Park, J. M., Joung, Y. H., Lee, S., Chung, E., Kim, S. Y., Yu, S. H. and Choi D (2005) A plant EPF-type zinc-finger protein, CaPIF1, involved in defense against pathogens. Mol. Plant Pathol. 6, 269-285. https://doi.org/10.1111/j.1364-3703.2005.00284.x
  29. Kubo, K., Sakamoto, A., Kobayashi, A., Rybka, Z., Kanno, Y., Nakagawa, H. and Takatsuji, H. (1998) Cys2/His2 zinc-finger protein family of petunia: evolution and general mechanism of target-sequence recognition. Nucleic Acids Res. 26, 608-615. https://doi.org/10.1093/nar/26.2.608
  30. Uehara, Y., Takahashi, Y., Berberich, T., Miyazaki, A., Takahashi, H., Matsui, K., Ohme-Takagi, M., Saitoh, H., Terauchi, R. and Kusano, T. (2005) Tobacco ZFT1, a transcriptional repressor with a Cys2/His2 type zinc finger motif that functions in spermine-signaling pathway. Plant Mol. Biol. 59, 435-448. https://doi.org/10.1007/s11103-005-0272-0
  31. Sakamoto, A., Minami, M., Huh, G. H. and Iwabuchi, M. (1993) The putative zinc-finger protein WZF1 interacts with a cis-acting element of wheat histone genes. Eur. J. Biochem. 217, 1049-1056. https://doi.org/10.1111/j.1432-1033.1993.tb18336.x
  32. Lippuner, V., Cyert, M. S. and Gasser, C. S. (1996) Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J. Biol. Chem. 271, 12859-12866. https://doi.org/10.1074/jbc.271.22.12859
  33. Michael, A. J., Hofer, J. M. and Ellis, T. H. (1996) Isolation by PCR of a cDNA clone from pea petals with similarity to petunia and wheat zinc finger proteins. Plant Mol. Biol. 30, 1051-1058. https://doi.org/10.1007/BF00020815
  34. Frugier, F., Poirier, S., Satiat-Jeunemaitre, B., Kondorosi, A. and Crespi, M. (2000) A Kruppel-like zinc finger protein is involved in nitrogen-fixing root nodule organogenesis. Genes Dev. 14, 475-482.
  35. Kim, J. C., Lee, S. H., Cheong, Y. H., Yoo, C. M., Lee, S. I., Chun, H. J., Yun, D. J., Hong, J. C., Lee, S. Y., Lim, C. O. and Cho, M. J. (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J. 25, 247-259. https://doi.org/10.1046/j.1365-313x.2001.00947.x
  36. Pauw, B., Hilliou, F. A. O., Martin, V. S., Chatel, G., de Wolf, C. J. F., Champion, A., Pre, M., van Duijn, B., Kijne, J. W., van der Fits, L. and Memelink, J. (2004) Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J. Biol. Chem. 279, 52940-52948. https://doi.org/10.1074/jbc.M404391200
  37. Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 136, 2734-2746. https://doi.org/10.1104/pp.104.046599
  38. Chung, E., Kim, S. Y., Yi, S. Y. and Choi, D. (2003) Capsicum annuum dehydrin, an osmotic-stress gene in hot pepper plants. Mol. Cells 15, 327-332.
  39. Dellaporta, S. L., Wood, J. and Hicks, J. B. (1983) A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1, 19-21. https://doi.org/10.1007/BF02712670