DOI QR코드

DOI QR Code

Acrolein, the toxic endogenous aldehyde, induces neurofilament-L aggregation

  • Published : 2008.09.30

Abstract

Acrolein is a highly reactive by product of lipid peroxidation and individuals with neurodegenerative disorders have been shown to contain elevated concentrations of this molecule in the brain. In the present study, we examined the pattern of neurofilament-L (NF-L) modification elicited by acrolein. When NF-L was incubated with acrolein, protein aggregation occurred in a acrolein concentration-dependent manner. Exposure of NF-L to acrolein also led to the generation of protein carbonyl compounds. Through the addition of free radical scavengers we observed a significant decrease in acrolein-mediated NF-L aggregation. These results indicate that free radicals may be involved in the modification of NF-L by acrolein. In addition, dityrosine crosslink formation was observed in acrolein-mediated NF-L aggregates and these aggregates displayed thioflavin T reactivity, reminiscent of amyloid. This study suggests that acrolein-mediated NF-L aggregation might be closely related to oxidative reactions, thus these reactions may play a critical role in neuro-degenerative diseases.

Keywords

References

  1. Yan, S. D., Chen, X., Schmide, A. M., Brett, J., Godman, G., Zou, Y. S., Scott, C. W., Caputo, C., Frappier, T., Smith, M. A., Perry, G., Yen, S.-H. and Stern, D. (1994) Glycated tau protein in Alzheimer's disease: a mechanism for induction of oxidant stress. Proc. Natl. Acad. Sci. U.S.A. 91, 7787-7791 https://doi.org/10.1073/pnas.91.16.7787
  2. Sayre, L. M., Zelasko, D. A., Harris, P. L. R., Perry, G., Salomon, R.G. and Smith, M. A. (1997) 4-hydroxynonenal- derived advanced lipid peroxidation end products are increased in Alzheimer's disease. J. Neurochem. 68, 2092-2097 https://doi.org/10.1046/j.1471-4159.1997.68052092.x
  3. Lovell, M. A., Xie, C. and Markesbery, W. R. (2000) Acrolein, a product of lipid peroxidation, inhibits glucose and glutamate uptake in primary neuronal cultures. Free Radic. Biol. Med. 29, 714-720 https://doi.org/10.1016/S0891-5849(00)00346-4
  4. Esterbawer, H., Schaur, R. J. and Zollner, H. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11, 61-128
  5. Ambalavanan, N., Carlo, W. F., Bulger, A., Shi, J. and Philips III., J. B. (2001) Effect of cigarette smoke extract on neonatal porcine vascular smooth muscle cells. Toxicol. Appl. Pharmacol. 170, 130-136 https://doi.org/10.1006/taap.2000.9094
  6. Krokan, H., Grafstrom, R. C., Sundgvist, K., Esterbauer, H. and Harris, C. C. (1985) Cytotoxicity, thiol depletion and inhibition of 6-methylguanine DNA methyltransferase by various aldehydes in cultured human bronchial fibroblasts. Carcinogenesis 6, 1755-1759 https://doi.org/10.1093/carcin/6.12.1755
  7. Lovell, M. A., Xie, C. and Markesbery, W. R. (2001) Acrolein is increased in Alzheimer's disease brain and is toxic to primary hippocampal cultures. Neurobiol. Aging 22, 187-194 https://doi.org/10.1016/S0197-4580(00)00235-9
  8. Nakamura, Y., Romberger, D. J., Tate, L., Ertl, R. F., Kawamoto, M., Adachi, Y., Mio, T., Sisson, J. H., Spurzem, J. R. and Rennard, S. I. (1995) Cigarette smoke inhibits lung fibroblast proliferation and chemotaxis. Am. J. Respir. Crit. Care Med. 151, 1497-1503 https://doi.org/10.1164/ajrccm.151.5.7735606
  9. Nguyen, E. and Picklo, Sr., M.J. (2003) Inhibition of succinic semialdehyde dehydrogenase activity by alkenal products of lipid peroxidation. Biochem. Brophys. Acta 1637, 107-112 https://doi.org/10.1016/S0925-4439(02)00220-X
  10. Yang, Q., Hergenhahn, M., Weninger, A. and Bartsch, H. (1999) Cigarette smoke induces direct DNA damage in the human B-lymphoid cell line Raji. Carcinogenesis 20, 1769-1775 https://doi.org/10.1093/carcin/20.9.1769
  11. Calingasan, N. Y., Uchida, K. and Gibson, G. E. (1999) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer's disease. J. Neurochem. 72, 751-756 https://doi.org/10.1046/j.1471-4159.1999.0720751.x
  12. Lee, M. K. and Cleveland, D. W. (1996) Neuronal intermediate filaments. Ann. Rev. Neurosci. 19, 187-217 https://doi.org/10.1146/annurev.ne.19.030196.001155
  13. Shepherd, C. E., MoCann, H., Thiel, E. and Halliday, G. M. (2002) Neurofilament-immunoreactive neurons in Alzheimer's disease and dementia with Lewy bodies. Neurol. Dis. 9, 249-257 https://doi.org/10.1006/nbdi.2001.0469
  14. Galloway, P. G., Mulvihill, P. and Perry, G. (1992) Filaments of Lewy bodies contain insoluble cytoskeletal elements. Am. J. Pathol. 140, 809-822
  15. Collard, J. F., Cote, F. and Julien, J. P. (1995) Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375, 61-64 https://doi.org/10.1038/375061a0
  16. Grant, P. and Pant, H. C. (2000) Neurofilament protein synthesis and phosphorylation. J. Neurocytol. 29, 843-872 https://doi.org/10.1023/A:1010999509251
  17. Hirano, A., Donnenfeld, H., Sasaki, S. and Nakano, I. (1984) Fine structural observations of neurofilaments changes in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 43, 461-470 https://doi.org/10.1097/00005072-198409000-00001
  18. Ma, D., Descarries, L., Micheva, K. D., Lepage, Y., Julien, J. P. and Doucet, G. (1999) Severe neuronal losses with age in the parietal cortex and ventrobasal thalamus of mice transgenic for the human NF-L neurofilament protein. J. Comp. Neurol. 406, 433-448 https://doi.org/10.1002/(SICI)1096-9861(19990419)406:4<433::AID-CNE2>3.0.CO;2-3
  19. Xu, Z., Cork, L. C., Griffin, J. W. and Cleveland, D. W. (1993) Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 73, 23-33 https://doi.org/10.1016/0092-8674(93)90157-L
  20. Uchida, K., Kanematsu, M., Morimitsu, Y., Osawa, T., Noguchi, N. and Niki, E. (1998) Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J. Biol. Chem. 273, 16058-16066 https://doi.org/10.1074/jbc.273.26.16058
  21. Jenner, P. (1996) Oxidative stress in Parkinson's disease and other neurodegenerative disorders. Pathol. Biol. (Paris) 44, 57-64
  22. Tabner, B. J., Tumbull, S., El-Agnaf O. M. and Allshhop, D. (2002) Formation of hydrogen peroxide and hydroxyl radicals from A(beta) and alpha-synuclein as a possible mechanism of cell death in Alzheimer's disease and Parkinson's disease. Free Radic. Biol. Med. 32, 1076-1083 https://doi.org/10.1016/S0891-5849(02)00801-8
  23. Kang, J. H. (2007) Salsolinol, a tetrahydroisoquinoline catechol neurotoxin, induces human Cu,Zn-superoxide dismutase modification. J. Biochem. Mol. Biol. 40, 684-689 https://doi.org/10.5483/BMBRep.2007.40.5.684
  24. Meister, A. and Anderson, M. E. (1983) Glutathione. Annu. Rev. Biochem. 52, 711-760 https://doi.org/10.1146/annurev.bi.52.070183.003431
  25. Forbes, R. A, Steenbergen, C. and Murphy, E. (2001) Diazoxide- induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ. Res. 88, 802-809 https://doi.org/10.1161/hh0801.089342
  26. Penna, C., Rastaldo, R., Mancardi, D., Raimondo, S., Cappello, S., Gattullo, D., Losano, G. and Pagliaro, P. (2006) Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic. Res. Cardiol. 10, 180-189
  27. Stadtman, E. R. (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal- catalyzed reactions. Annu. Rev. Biochem. 62, 797-821 https://doi.org/10.1146/annurev.bi.62.070193.004053
  28. Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E. K., Jones, P. K., Ghanbari, H., Wataya, T., Shimohamas, S., Chiba, S., Atwood, C. S., Petersen, R. B. and Smith, M. A. (2001) Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60, 759-767 https://doi.org/10.1093/jnen/60.8.759
  29. Kim, N. H. and Kang, J. H. (2007) Protective effects of histidine dipeptides on the modification of neurofilament-L by the cytochrome c/hydrogen peroxide system. J. Biochem. Mol. Biol. 40, 125-129 https://doi.org/10.5483/BMBRep.2007.40.1.125
  30. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F.-H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76-85 https://doi.org/10.1016/0003-2697(85)90442-7
  31. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0

Cited by

  1. The Nervous System Cytoskeleton under Oxidative Stress vol.1, pp.1, 2013, https://doi.org/10.3390/diseases1010036
  2. Molecular Mechanisms of Acrolein Toxicity: Relevance to Human Disease vol.143, pp.2, 2015, https://doi.org/10.1093/toxsci/kfu233
  3. Lipid peroxidation and neurodegenerative disease vol.51, pp.7, 2011, https://doi.org/10.1016/j.freeradbiomed.2011.06.027
  4. Neuroprotective Effects of Baicalein on Acrolein-induced Neurotoxicity in the Nigrostriatal Dopaminergic System of Rat Brain 2018, https://doi.org/10.1007/s12035-017-0725-x
  5. Covalent modification of cytoskeletal proteins in neuronal cells by tryptamine-4,5-dione vol.2, 2014, https://doi.org/10.1016/j.redox.2014.08.004
  6. Free-radicals and advanced chemistries involved in cell membrane organization influence oxygen diffusion and pathology treatment vol.4, pp.2, 2017, https://doi.org/10.3934/biophy.2017.2.240
  7. Acrolein acts as a neurotoxin in the nigrostriatal dopaminergic system of rat: involvement of α-synuclein aggregation and programmed cell death vol.7, 2017, https://doi.org/10.1038/srep45741
  8. Interplay of salicylaldehyde, lysine, and M2+ ions on α-synuclein aggregation: Cancellation of aggregation effects and determination of salicylaldehyde neurotoxicity vol.71, pp.2, 2011, https://doi.org/10.1016/j.neures.2011.07.003
  9. Cystitis increases colorectal afferent sensitivity in the mouse vol.297, pp.6, 2009, https://doi.org/10.1152/ajpgi.00329.2009