DOI QR코드

DOI QR Code

NCAM as a cystogenesis marker gene of PKD2 overexpression

  • Yoo, Kyung-Hyun (Department of Biological Science, Sookmyung Women's University) ;
  • Lee, Tae-Young (Department of Biological Science, Sookmyung Women's University) ;
  • Yang, Moon-Hee (Department of Biological Science, Sookmyung Women's University) ;
  • Park, Eun-Young (Department of Biological Science, Sookmyung Women's University) ;
  • Yook, Yeon-Joo (Department of Biological Science, Sookmyung Women's University) ;
  • Lee, Hyo-Soo (Department of Biological Science, Sookmyung Women's University) ;
  • Park, Jong-Hoon (Department of Biological Science, Sookmyung Women's University)
  • Published : 2008.08.31

Abstract

ADPKD (Autosomal Dominant Polycystic Kidney Disease) is characterized by the progressive expansion of multiple cystic lesions in the kidneys. ADPKD is caused by mutations in Ed-pl. consider PKD1 and PKD2. Recently a relation between c-myc and the pathogenesis of ADPKD was reported. In addition, c-Myc is a downstream effector of PKD1. To identify the gene regulated by PKD2 and c-Myc, we performed gene expression profiling in PKD2 and c-Myc overexpressing cells using a human 8K cDNA microarray. NCAM (neuronal cell adhesion molecule) levels were significantly reduced in PKD2 overexpressing systems in vitro and in vivo. These results suggest that NCAM is an important molecule in the cystogenesis induced by PKD2 overexpession.

Keywords

References

  1. Gabow, P.A. (1993) Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 329, 332-342. https://doi.org/10.1056/NEJM199307293290508
  2. Grantham, J.J. (1996) The etiology, pathogenesis, and treatment of autosomal dominant polycystic kidney disease: recent advances. Am. J. Kidney Dis. 28, 788-803. https://doi.org/10.1016/S0272-6386(96)90378-9
  3. Arnaout, M.A. (2001) Molecular genetics and pathogenesis of autosomal dominant polycystic kidney disease. Annu. Rev. Med. 52, 93-123. https://doi.org/10.1146/annurev.med.52.1.93
  4. Boletta, A. and Germino, G.G. (2003) Role of polycystins in renal tubulogenesis. Trends Cell Biol. 13, 484-492. https://doi.org/10.1016/S0962-8924(03)00169-7
  5. Thivierge, C., Kurbegovic, A., Couillard, M., Guillaume, R., Cote, O. and Trudel, M. (2006) Overexpression of PKD1 causes polycystic kidney disease. Mol. Cell. Biol. 26, 1538-1548. https://doi.org/10.1128/MCB.26.4.1538-1548.2006
  6. Torra, R., Badenas, C., San, Millan., J.L., Perez-Oller, L., Estivill, X. and Darnell, A. (1999) A loss-of-function model for cystogenesis in human autosomal dominant polycystic kidney disease type 2. Am. J. Hum. Genet. 65, 345-352. https://doi.org/10.1086/302501
  7. Lantinga-van, Leeuwen, I.S., Dauwerse, J.G., Baelde, H.J., Leonhard, W.N., van, de, Wal, A., Ward, C.J., Verbeek, S., Deruiter, M.C., Breuning, M.H., de, Heer, E. and Peters, D.J. (2004) Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum. Mol. Genet. 13, 3069-3077. https://doi.org/10.1093/hmg/ddh336
  8. Pritchard, L., Sloane-Stanley, J.A., Sharpe, J.A., Aspinwall, R., Lu, W., Buckle, V., Strmecki, L., Walker, D., Ward, C.J., Alpers, C.E., Zhou, J., Wood, W.G. and Harris, P.C. (2000) A human PKD1 transgene generates functional polycystin- 1 in mice and is associated with a cystic phenotype. Hum. Mol. Genet. 9, 2617-2627. https://doi.org/10.1093/hmg/9.18.2617
  9. Wu, G., Tian, X., Nishimura, S., Markowitz, G.S., D'Agati, V., Park, J.H., Yao, L., Li, L., Geng, L., Zhao, H., Edelmann, W. and Somlo, S. (2002) Transheterozygous Pkd1 and Pkd2 mutations modify expression of polycystic kidney disease. Hum. Mol. Genet. 11, 1845-1854. https://doi.org/10.1093/hmg/11.16.1845
  10. Wu, G., D'Agati, V., Cai, Y., Markowitz, G., Park, J.H., M.Reynolds, D., Maeda, D.C., Le, T., Hou, Jr H., Kucherlapti, R., Edelmann, W. and Somlo, S. (1996) Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93, 177-188.
  11. Justin, L.R., John, E.M., Patrick, L.I. and Vincent, H.G. (2002) c-myc antisense oligonucleotide treatment ameliorates murine ARPKD. Kidney Int. 61, S125-S131. https://doi.org/10.1046/j.1523-1755.2002.0610s1125.x
  12. Trudel, M., Lanoix, J., Barisoni, L., Blouin, M., Desforges, M., L'Italien, C. and D'Agati, V. (1997) c-Myc induced apoptosis in polycystic kidney disease is Bcl-2 and p53 dependent. J. Exp. Med. 188, 1873-1884.
  13. Mochizuki, T., Wu, G., Hayashi, T., Xenophontos, S., Veldhuisen, B., Saris, J., Renolds, D., Cai, Y., Gabow, P., Pierides, A., Kimberling, W., Breuning, M., Deltas, C., Peters, D. and Somlo, S. (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 272, 1339-1342. https://doi.org/10.1126/science.272.5266.1339
  14. The American PKD1 consortium (1995) Analysis of the genomic sequence for the autosomal dominant polycystic kidney disease (PKD1) gene predicts the presence of a leucine- rich repeat. Hum Mol Genet. 4, 575-582. https://doi.org/10.1093/hmg/4.4.575
  15. The international polycystic kidney disease consortium (1995) Polycystic kidney disease: the complete structure of the PKD1 gene and its proteins. Cell 8, 289-298.
  16. Murcia, N.S., Sweeney, W.E. and Jr Avner, E.D. (1999) New insights into the molecular pathophysiology of polycystic kidney disease. Kidney Int. 55, 1187-1197. https://doi.org/10.1046/j.1523-1755.1999.00370.x
  17. Acheson, A., Sunshine, J.L. and Rutischauser, U. (1991) NCAM polysialic acid can regulate both cell-cell and cell-substrate interaction. J Cell Biol. 114, 143-154. https://doi.org/10.1083/jcb.114.1.143
  18. Cunningham, B.A., Herperly, J.J., Myrrat, B.A., Prediger, E.A., Brackenbury, R. and Edelman, G.M. (1987) Neural cell adhension molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative splicing. Science 236, 799-806. https://doi.org/10.1126/science.3576199
  19. Rocco, M.V., Nelison, E.G., Hoyer, JR, Zlyadeh, F.N. (1992) Attenuated expression of epithelial cell adhesion molecules in murine polycystic kidney disease. Am. J. Physiol. 262, F679-686.

Cited by

  1. Down-regulation of Pkd2 by siRNAs suppresses cell–cell adhesion in the mouse melanoma cells vol.37, pp.5, 2010, https://doi.org/10.1007/s11033-009-9746-5
  2. TRPP2 and TRPV4 Form an EGF-Activated Calcium Permeable Channel at the Apical Membrane of Renal Collecting Duct Cells vol.8, pp.8, 2013, https://doi.org/10.1371/journal.pone.0073424