References
- Gabow, P.A. (1993) Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 329, 332-342. https://doi.org/10.1056/NEJM199307293290508
- Grantham, J.J. (1996) The etiology, pathogenesis, and treatment of autosomal dominant polycystic kidney disease: recent advances. Am. J. Kidney Dis. 28, 788-803. https://doi.org/10.1016/S0272-6386(96)90378-9
- Arnaout, M.A. (2001) Molecular genetics and pathogenesis of autosomal dominant polycystic kidney disease. Annu. Rev. Med. 52, 93-123. https://doi.org/10.1146/annurev.med.52.1.93
- Boletta, A. and Germino, G.G. (2003) Role of polycystins in renal tubulogenesis. Trends Cell Biol. 13, 484-492. https://doi.org/10.1016/S0962-8924(03)00169-7
- Thivierge, C., Kurbegovic, A., Couillard, M., Guillaume, R., Cote, O. and Trudel, M. (2006) Overexpression of PKD1 causes polycystic kidney disease. Mol. Cell. Biol. 26, 1538-1548. https://doi.org/10.1128/MCB.26.4.1538-1548.2006
- Torra, R., Badenas, C., San, Millan., J.L., Perez-Oller, L., Estivill, X. and Darnell, A. (1999) A loss-of-function model for cystogenesis in human autosomal dominant polycystic kidney disease type 2. Am. J. Hum. Genet. 65, 345-352. https://doi.org/10.1086/302501
- Lantinga-van, Leeuwen, I.S., Dauwerse, J.G., Baelde, H.J., Leonhard, W.N., van, de, Wal, A., Ward, C.J., Verbeek, S., Deruiter, M.C., Breuning, M.H., de, Heer, E. and Peters, D.J. (2004) Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum. Mol. Genet. 13, 3069-3077. https://doi.org/10.1093/hmg/ddh336
- Pritchard, L., Sloane-Stanley, J.A., Sharpe, J.A., Aspinwall, R., Lu, W., Buckle, V., Strmecki, L., Walker, D., Ward, C.J., Alpers, C.E., Zhou, J., Wood, W.G. and Harris, P.C. (2000) A human PKD1 transgene generates functional polycystin- 1 in mice and is associated with a cystic phenotype. Hum. Mol. Genet. 9, 2617-2627. https://doi.org/10.1093/hmg/9.18.2617
- Wu, G., Tian, X., Nishimura, S., Markowitz, G.S., D'Agati, V., Park, J.H., Yao, L., Li, L., Geng, L., Zhao, H., Edelmann, W. and Somlo, S. (2002) Transheterozygous Pkd1 and Pkd2 mutations modify expression of polycystic kidney disease. Hum. Mol. Genet. 11, 1845-1854. https://doi.org/10.1093/hmg/11.16.1845
- Wu, G., D'Agati, V., Cai, Y., Markowitz, G., Park, J.H., M.Reynolds, D., Maeda, D.C., Le, T., Hou, Jr H., Kucherlapti, R., Edelmann, W. and Somlo, S. (1996) Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93, 177-188.
- Justin, L.R., John, E.M., Patrick, L.I. and Vincent, H.G. (2002) c-myc antisense oligonucleotide treatment ameliorates murine ARPKD. Kidney Int. 61, S125-S131. https://doi.org/10.1046/j.1523-1755.2002.0610s1125.x
- Trudel, M., Lanoix, J., Barisoni, L., Blouin, M., Desforges, M., L'Italien, C. and D'Agati, V. (1997) c-Myc induced apoptosis in polycystic kidney disease is Bcl-2 and p53 dependent. J. Exp. Med. 188, 1873-1884.
- Mochizuki, T., Wu, G., Hayashi, T., Xenophontos, S., Veldhuisen, B., Saris, J., Renolds, D., Cai, Y., Gabow, P., Pierides, A., Kimberling, W., Breuning, M., Deltas, C., Peters, D. and Somlo, S. (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 272, 1339-1342. https://doi.org/10.1126/science.272.5266.1339
- The American PKD1 consortium (1995) Analysis of the genomic sequence for the autosomal dominant polycystic kidney disease (PKD1) gene predicts the presence of a leucine- rich repeat. Hum Mol Genet. 4, 575-582. https://doi.org/10.1093/hmg/4.4.575
- The international polycystic kidney disease consortium (1995) Polycystic kidney disease: the complete structure of the PKD1 gene and its proteins. Cell 8, 289-298.
- Murcia, N.S., Sweeney, W.E. and Jr Avner, E.D. (1999) New insights into the molecular pathophysiology of polycystic kidney disease. Kidney Int. 55, 1187-1197. https://doi.org/10.1046/j.1523-1755.1999.00370.x
- Acheson, A., Sunshine, J.L. and Rutischauser, U. (1991) NCAM polysialic acid can regulate both cell-cell and cell-substrate interaction. J Cell Biol. 114, 143-154. https://doi.org/10.1083/jcb.114.1.143
- Cunningham, B.A., Herperly, J.J., Myrrat, B.A., Prediger, E.A., Brackenbury, R. and Edelman, G.M. (1987) Neural cell adhension molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative splicing. Science 236, 799-806. https://doi.org/10.1126/science.3576199
- Rocco, M.V., Nelison, E.G., Hoyer, JR, Zlyadeh, F.N. (1992) Attenuated expression of epithelial cell adhesion molecules in murine polycystic kidney disease. Am. J. Physiol. 262, F679-686.
Cited by
- Down-regulation of Pkd2 by siRNAs suppresses cell–cell adhesion in the mouse melanoma cells vol.37, pp.5, 2010, https://doi.org/10.1007/s11033-009-9746-5
- TRPP2 and TRPV4 Form an EGF-Activated Calcium Permeable Channel at the Apical Membrane of Renal Collecting Duct Cells vol.8, pp.8, 2013, https://doi.org/10.1371/journal.pone.0073424