DOI QR코드

DOI QR Code

A heat shock cognate 70 gene in the endoparasitoid, Pteromalus puparum, and its expression in relation to thermal stress

  • Wang, Huan (State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University) ;
  • Dong, Sheng-Zhang (State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University) ;
  • Li, Kai (Institute of Biological Science and Biotechnology, Donghua University) ;
  • Hu, Cui (State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University) ;
  • Ye, Gong-Yin (State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University)
  • Published : 2008.05.31

Abstract

The Pphsc70 (heat shock cognate 70) gene was isolated from the endoparasitoid Pteromalus puparum and then characterized. The full-length cDNA was 2204 base pair (bp) and contained a single 1968 bp ORF that encoded a polypeptide of 656 amino acids with a predicted molecular mass of 71.28 kDa. Phylogenetic analysis based on Hsc70 amino acid sequences from fifteen insect species agreed with the present phylogeny. In addition, genomic DNA confirmed the presence of three introns located at the coding region as well as the 5'UTR. A significant elevation of Pphsc70 expression was observed following heat treatment, however, continued exposure to heat shock or recovery caused the expression of induced mRNA to gradually decline to levels that were significantly lower than those of control pupae (P < 0.05). In addition, a significant increase was observed in the emergence rate of pupae that were preheated at $40^{\circ}C$ and then exposed to $50^{\circ}C$ for 1 h when compared with the pupae that were not preheated, but instead directly exposed to $50^{\circ}C$. Taken together, these results revealed that exposure to gradually increasing temperatures can enhance an insects thermo-tolerance.

Keywords

References

  1. Ritossa, F. (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia. 18, 571-573 https://doi.org/10.1007/BF02172188
  2. Lindquist, S. (1986) The heat-shock response. Annu. Rev. Biochem. 55, 1151-1191 https://doi.org/10.1146/annurev.bi.55.070186.005443
  3. Sorensen, J. G., Kristensen, T. N. and Loeschcke, V. (2003) The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 6, 1025-1037 https://doi.org/10.1046/j.1461-0248.2003.00528.x
  4. Feder, M. E. and Hofmann, G. E. (1999) Heat shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243-282 https://doi.org/10.1146/annurev.physiol.61.1.243
  5. Parsell, D. A. and Lindquist, S. (1993) The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437-496 https://doi.org/10.1146/annurev.ge.27.120193.002253
  6. Boutet, I., Tanguy, A., Rousseau, S., Auffret, M. and Moraga, D. (2003) Molecular identification and expression of heat shock cognate 70 (hsc70) and heat shock protein 70 (hsp70) genes in the Pacific oyster Crassostrea gigas. Cell Stress Chaperon. 8, 76-85 https://doi.org/10.1379/1466-1268(2003)8<76:MIAEOH>2.0.CO;2
  7. Huang, L. and Kang, L. (2007) Cloning and interspecific altered expression of heat shock protein genes in two leafminer species in response to thermal stress. Insect Mol. Biol. 16, 491-500 https://doi.org/10.1111/j.1365-2583.2007.00744.x
  8. Papadimitriou, E., Kritikou, D., Mavroidis, M., Zacharopoulou, A. and Mintzas, A. C. (1998) The heat shock 70 gene family in the Mediterranean fruit fly Ceratitis capitata. Insect Mol. Biol. 7, 279-290 https://doi.org/10.1111/j.1365-2583.1998.00073.x
  9. Renier, N. K. K., Yang, W. J. and Rao, K. R. (2003) Cloning and characterization of a 70 kDa heat shock cognate gene (hsc70) from two species of Chironomus. Insect Mol. Biol. 12, 19-26 https://doi.org/10.1046/j.1365-2583.2003.00383.x
  10. Rybczynski, R. and Gilbert, L. I. (2000) cDNA cloning and expression of a hormone-regulated heat shock protein (hsc70) from the prothoracic gland of Manduca sexta. Insect Biochem. Mol. Biol. 30, 579-589 https://doi.org/10.1016/S0965-1748(00)00031-X
  11. Sonoda, S., Ashfaq, M. and Tsumuki, H. (2006) Cloning and nucleotide sequencing of three heat shock protein genes (hsp90, hsc70, and hsp19.5) from the diamondback moth, Plutella xylostella (L.) and their expression in relation to developmental stage and temperature. Arch. Insect Biochem. Physiol. 62, 80-90 https://doi.org/10.1002/arch.20124
  12. Sonoda, S., Fukumoto, K., Izumi, Y., Yoshida, H. and Tsumuki, H. (2006) Cloning of heat shock protein genes (hsp90 and hsc70) and their expression during larval diapause and cold tolerance acquisition in the rice stem borer, Chilo suppressalis Walker. Arch. Insect Biochem. Physiol. 63, 36-47 https://doi.org/10.1002/arch.20138
  13. Asgari, S., Zhang, G. and Schmidt, O. (2003) Polydnavirus particle proteins with similarities to molecular chaperones, heat-shock protein 70 and calreticulin. J. Gen. Virol. 84, 1165-1171 https://doi.org/10.1099/vir.0.19026-0
  14. Graham, M. W. R. de V. (1969) The Pteromalidae of northwestern Europe (Hymenoptera: Chalcidoidea). Bul. Br. Mus. Nal. Hist. (Ent. Suppl.) 16, 1-908
  15. Takagi, M. (1985) The reproductive strategy of the gregarious parasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae) 1.Optimal number of eggs in a single host. Oecologia. 68, 1-6 https://doi.org/10.1007/BF00379463
  16. Hu, C. (1984) Life history and occurrence of Pteromalus puparum L. in China. Acta Entomol. Sin. 27, 302-307
  17. Hu, C. (1986) The developmental rate of Pteromalus puparum in relation to temperature. Acta Entomol. Sin. 29, 101-103
  18. Hu, C. and Wan, X. S. (1988) Studies on the sex ratio of Pteromalus puparum L. Acta Entomol. Sin. 31, 332-335
  19. Chen, B., Kayakawa, T., Monteiro, A. and Ishikawa, Y. (2006) Cloning and characterization of the HSP70 gene, and its expression in response to diapauses and thermal stress in the onion maggot, Delia antiqua. J. Biochem. Mol. Biol. 39, 749-758 https://doi.org/10.5483/BMBRep.2006.39.6.749
  20. Denlinger, D. L., Rinehart, J. P. and Yocum, G. D. (2001) Stress proteins: A role in insect diapause. In Insect Timing: Cirodian Rhythmicity to Seasonality, Denlinger, D. L., Giebultowicz, J. and Saunders, D. S. (eds.) Elsevier Sciences B. V., Amsterdam, Netherlands, pp. 155-171
  21. Qin, W., Tyshenko, M. G., Wu, B. S., Walker, V. K. and Robertson, R. M. (2003) Cloning and characterization of a member of the hsp70 gene family from Locusta migratoria, a highly thermotolerant insect. Cell Stress Chaperon. 8, 144-152 https://doi.org/10.1379/1466-1268(2003)008<0144:CACOAM>2.0.CO;2
  22. Chuang, K. H., Ho, S. H. and Song, Y. L. (2007) Cloning and expression analysis of heat shock cognate 70 gene promoter in tiger shrimp (Penaeus monodon). Gene. 405, 10-18 https://doi.org/10.1016/j.gene.2007.08.016
  23. Fangue, N. A., Hofmeister, M. and Schulte, P. M. (2006) Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J Exp Biol. 209, 2859-2872 https://doi.org/10.1242/jeb.02260
  24. Krebs, R. A. and Feder, M. E. (1997) Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress Chaperon. 2, 60-71 https://doi.org/10.1379/1466-1268(1997)002<0060:DCOHOI>2.3.CO;2
  25. Krebs, R. A. and Feder, M. E. (1998) Hsp70 and larval thermotolerance in Drosophila melanogaster: how much is enough and when is more too much? J. Insect Physiol. 44, 1091-1101 https://doi.org/10.1016/S0022-1910(98)00059-6
  26. Huang, L., Chen, B. and Kang, L. (2007) Impact of mild temperature hardening on thermotolerance, fecundity, and Hsp gene expression in Liriomyza huidobrensis. J. Insect Physiol. 53, 1199-1205 https://doi.org/10.1016/j.jinsphys.2007.06.011
  27. Petersen, R. and Lindquist, S. (1988) The Drosophila hsp70 message is rapidly degraded at normal temperatures and stabilized by heat shock. Gene. 72, 161-168 https://doi.org/10.1016/0378-1119(88)90138-2
  28. Cho, E. K. and Bae, S. (2007) ATP-independent thermoprotective activity of Nicotiana tabacum heat shock protein 70 in Escherichia coli. J. Biochem. Mol. Biol. 40, 107-112 https://doi.org/10.5483/BMBRep.2007.40.1.107
  29. Hoffmann, A. A., Sorensen, J. G. and Loeschcke, V. (2003) Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Therm. Biol. 28, 175-216 https://doi.org/10.1016/S0306-4565(02)00057-8
  30. Yin, X., Wang, S., Tang, J., Hansen, J. D. and Lurie, S. (2006) Thermal conditioning of fifth-instar Cydia pomonella (Lepidoptera: Tortricidae) affects HSP70 accumulation and insect mortality. Physiol. Entomol. 31, 241-247 https://doi.org/10.1111/j.1365-3032.2006.00512.x
  31. Cai, J., Ye, G. Y. and Hu, C. (2004) Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a pupal endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae): effects of parasitization and venom on host hemocytes. J. Insect Physiol. 50, 315-322 https://doi.org/10.1016/j.jinsphys.2004.01.007
  32. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  33. Kumar, S., Tamura, K., Nei, M. (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5, 150-163 https://doi.org/10.1093/bib/5.2.150
  34. Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the $2^{−{\Delta}{\Delta} CT}$ method. Methods. 25, 402-408 https://doi.org/10.1006/meth.2001.1262

Cited by

  1. Effects of high temperature on life history traits and heat shock protein expression in chlorpyrifos-resistant Laodelphax striatella vol.136, 2017, https://doi.org/10.1016/j.pestbp.2016.08.002
  2. Thermotolerance and hsp70 heat shock response in the cold-stenothermal chironomid Pseudodiamesa branickii (NE Italy) vol.16, pp.4, 2011, https://doi.org/10.1007/s12192-010-0251-5
  3. Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster vol.277, pp.1, 2010, https://doi.org/10.1111/j.1742-4658.2009.07470.x
  4. Identification of a heat shock cognate protein 70 gene in Chinese soft-shell turtle (Pelodiscus sinensis) and its expression profiles under thermal stress vol.13, pp.6, 2012, https://doi.org/10.1631/jzus.B1100309
  5. Cloning and Expression Analysis of Four Heat Shock Protein Genes in Ericerus pela (Homoptera: Coccidae) vol.14, pp.1, 2014, https://doi.org/10.1093/jisesa/ieu032
  6. Characterization of an abaecin-like antimicrobial peptide identified from a Pteromalus puparum cDNA clone vol.105, pp.1, 2010, https://doi.org/10.1016/j.jip.2010.05.006
  7. Transcript analysis and expression profiling of three heat shock protein 70 genes in the ectoparasitoidHabrobracon hebetor(Hymenoptera: Braconidae) vol.21, pp.4, 2014, https://doi.org/10.1111/1744-7917.12032
  8. Composition and Expression of Heat Shock Proteins in an Invasive Pest, The Rice Water Weevil (Coleoptera: Curculionidae) vol.97, pp.2, 2014, https://doi.org/10.1653/024.097.0237
  9. Identification, genomic organization and expression profiles of four heat shock protein genes in the western flower thrips, Frankliniella occidentalis vol.57, 2016, https://doi.org/10.1016/j.jtherbio.2016.03.005
  10. CLONING AND EXPRESSION PATTERN OF HEAT SHOCK PROTEIN GENES FROM THE ENDOPARASITOID WASP, Pteromalus puparum IN RESPONSE TO ENVIRONMENTAL STRESSES vol.79, pp.4-5, 2012, https://doi.org/10.1002/arch.21013
  11. Functional evaluation of Heat Shock Proteins 70 (HSP70/HSC70) on Rhodnius prolixus (Hemiptera, Reduviidae) physiological responses associated with feeding and starvation vol.77, 2016, https://doi.org/10.1016/j.ibmb.2016.07.011
  12. Expression Profiles of the Heat Shock Protein 70 Gene in Response to Heat Stress in Agrotis c-nigrum (Lepidoptera: Noctuidae) vol.15, pp.1, 2015, https://doi.org/10.1093/jisesa/ieu169
  13. Identification of heat shock protein genes hsp70s and hsc70 and their associated mRNA expression under heat stress in insecticide-resistant and susceptible diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) 2015, https://doi.org/10.14411/eje.2015.039
  14. Cloning ThreeHarmonia axyridis(Coleoptera: Coccinellidae) Heat Shock Protein 70 Family Genes: Regulatory Function Related to Heat and Starvation Stress vol.50, pp.3, 2015, https://doi.org/10.18474/JES14-30.1
  15. Cloning and expression pattern of a heat shock cognate protein 70 gene in ticks (Haemaphysalis flava) vol.116, pp.6, 2017, https://doi.org/10.1007/s00436-017-5444-8
  16. Proteomics analysis of two heat shock proteins in insects pp.1538-0254, 2019, https://doi.org/10.1080/07391102.2018.1494632
  17. Characterization of three heat shock protein 70 genes from Liriomyza trifolii and expression during thermal stress and insect development pp.1475-2670, 2018, https://doi.org/10.1017/S0007485318000354