DOI QR코드

DOI QR Code

Genetic Variation and Divergence among Swamp Buffalo, River Buffalo and Cattle: A Microsatellite Survey on Five Populations in China

  • Zhang, Yi (Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University) ;
  • Sun, Dongxiao (Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University) ;
  • Yu, Ying (Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University) ;
  • Zhang, Yuan (Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University)
  • Received : 2007.12.24
  • Accepted : 2008.04.23
  • Published : 2008.09.01

Abstract

Domestic buffalo and cattle are two extremely important livestock species in worldwide agricultural production. In this paper, to investigate genetic diversity and divergence among swamp buffalo, river buffalo and cattle, 30 microsatellite markers were screened on 168 individuals sampled from five populations. Substantial differences were observed among the three groups of animals with respect to allele frequency distribution, allele size and polymorphism. The cattle sample (Mongolian) showed significantly higher genetic variability (0.674 of gene diversity, p<0.01), and the swamp and river buffalo samples displayed similar degree of genetic variation (0.536 in swamp and 0.546 in river, p = 0.92). Results of both phylogenetic tree and multivariate analysis could distinguish three groups of animals, suggesting their deep evolutionary divergence. Additionally, using $({\delta}{\mu})^2$ genetic distance, we estimated a divergence time of 1.7 million years between swamp and river buffalo that strongly supported distinct genetic origins for the two buffalo types.

Keywords

References

  1. Barker, J. S. F., S. G. Tan, O. S. Selvarah and T. K. Mukherjee. 1997a. Genetic variation within and relationships among populations of Asian water buffalo (Bubalus bubalis). Anim. Genet. 28:1-13. https://doi.org/10.1111/j.1365-2052.1997.00036.x
  2. Barker, J. S. F., S. S. Moore, D. J. S. Hetzel, D. Evans, S. G. Tan and K. Byrne. 1997b. Genetic diversity of Asian water buffalo (Bubalus bubalis): micro satellite variation and a comparison with protein-coding loci. Anim. Genet. 28: 103-115. https://doi.org/10.1111/j.1365-2052.1997.00085.x
  3. Baumung, R., H. Simianer and I. Hoffmaun. 2004. Genetic diversity studies in farm animals - a survey. J. Anim. Breed. Genet. 121:361-373. https://doi.org/10.1111/j.1439-0388.2004.00479.x
  4. Belkhir, K., P. Borsa, J. Goudet, L. Chikhi and F. Bonhomme. 1998. Genetix, logicial sous windows TM pour la genetique des populations. Montpellier. France. Available from http://www.univ-montp2.fr/-genetix/genetix.htm
  5. Botstein, D., R. L. White, M. Skolnick and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Human Genet. 32: 314-331.
  6. Cockrill, W. R. 1974. The husbandry and health of the domestic buffalo. FAO, Rome.
  7. Ellegren, H., S. Moore, N. Robinson, K. Byrne, W. Ward and B. C. Sheldon. 1997. Microsatellite evolution - a reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol. Biol. Evol. 14:854-860. https://doi.org/10.1093/oxfordjournals.molbev.a025826
  8. Estoup, A., L. Garnery, M. Solignac and J. M. Cornuet. 1995. Microsatellite variation in honey bee (Apis Mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140: 679-695.
  9. Goldstein, D. B., A. R. Linares, L. L. Cavalli-Sforza and H. W. Feldman. 1995. An evaluation of genetic distance for use with micro satellite loci. Genetics 139:463-471.
  10. Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www2.unil.ch/popgen/softwares/fstat.htm
  11. Hoffmann, I., P. A. Marsan, J. S. F. Barker, E. G. Cothran, O. Hanotte, J. A. Lenstra, D. Milan, S. Weigend and H. Simianer. 2004. New MoDAD marker sets to be used in diversity studies for the major farm animal species: recommendations of a joint ISAG/FAO working group. In: Proc. 29th International Conference on Animal Genetics. Tokyo, Japan. p. 107
  12. Kumar, S., M. Nagarajan, J. S. Sandhu, N. Kumar, V. Behl and G. Nishanth. 2007. Mitochondrial DNA analyses of Indian water buffalo support a distinct genetic origin of river and swamp buffalo. Anim. Genet. 38:227-232. https://doi.org/10.1111/j.1365-2052.2007.01602.x
  13. Lebart, L., A. Morineau and K. M. Warwick. 1984. Multivariate Descriptive Statistical Analysis. John Wiley & Sons, INC., New York
  14. Lei, C. Z., W. Zhang, H. Chen, F. Lu, Q. L. Ge, R. Y. Liu, R. H. Dang, Y. Y. Yao, L. B. Yao, Z. F. Lu and Z. L. Zhao. 2007. Two maternal lineages revealed by mitochondrial DNA D-loop sequences in Chinese native water buffaloes (Bubalus bubalis). Asian-Aust. J. Anim. Sci. 20:471-476 https://doi.org/10.5713/ajas.2007.471
  15. Nei, M., F. Tajima and Y. Tateno. 1983. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol. 19:153-170. https://doi.org/10.1007/BF02300753
  16. Ota, T. 1993. DISPAN: Genetic distance and phylogenetic analysis. Pennsylvania State University, University Park, PA
  17. Ritz, L. R., M-L. Glowatzki-mullis, D. E. MacHugh and C. Gaillard. 2000. Phylogenetic analysis of the tribe Bovini using micro satellites. Anim. Genet. 31: 178-185. https://doi.org/10.1046/j.1365-2052.2000.00621.x
  18. Sambrook, J., E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, NY.
  19. Savage, D. E. and D. E. Russell. 1983. Mammalian paleo faunas of the world. Reading, MA
  20. Scherf, B. D. 2000. World watch list for domestic animal diversity. 3nd edn. FAO, Rome
  21. Sena, L., M. P. C. Schneider, B. Brenig, R. L. Honeycutt, J. E. Womack and L. C. Skow. 2003. Polymorphisms in MHC-DRA and -DRB alleles of water buffalo (Bubalus bubalis) reveal different features from cattle DR alleles. Anim. Genet. 34: 1-10. https://doi.org/10.1046/j.1365-2052.2003.00920.x
  22. Sraphet, S., B. Moolmuang, A. Na-Chiangrnai, S. Panyim, D. R. Smith and K. Triwitayakorn. 2008. Use of cattle micro satellite markers to assess genetic diversity of thai swamp buffalo (Bubalus bubalis). Asian-Aust. J. Anim. Sci. 21:177-180. https://doi.org/10.5713/ajas.2008.70327
  23. Sukla, S., B. R. Yadav and T. K. Bhattacharya. 2006. Characterization of Indian riverine buffaloes by micro satellite markers. Asian-Aust. J. Anim. Sci. 19:1556-1560. https://doi.org/10.5713/ajas.2006.1556
  24. Tanaka, K., C. D. Solis, J. S. Masangkay, K. Maeda, Y. Kawamoto and Y. Namikawa. 1996. Phylogenetic relationship among all living species of the genus Bubalus based on DNA sequences of the cytochrome b gene. Biochem. Genet. 34:443-452. https://doi.org/10.1007/BF00570125
  25. Vowles, E. J. and W. Amos. 2006. Quantifying ascertainment bias and species-specific length differences in human and chimpanzee micro satellites using genome sequences. Mol. Biol. Evol. 23:598-607. https://doi.org/10.1093/molbev/msj065
  26. Zhang, Y., D. Sun, Y. Yu and Y. Zhang. 2006. A Y-liuked SNP in SRY gene differentiated Chinese indigenous swamp buffalo and introduced river buffalo. Asian-Aust. J. Anim. Sci. 19:1240-1244. https://doi.org/10.5713/ajas.2006.1240
  27. Zhang, Y., D. Sun, Y. Yu and Y. Zhang. 2007. Genetic diversity and differentiation of Chinese domestic buffalo based on 30 microsatellite markers. Anim. Genet. 38:569-575. https://doi.org/10.1111/j.1365-2052.2007.01648.x

Cited by

  1. De Novo Transcriptome Assembly of the Chinese Swamp Buffalo by RNA Sequencing and SSR Marker Discovery vol.11, pp.1, 2016, https://doi.org/10.1371/journal.pone.0147132
  2. Genomic diversity and selection sweeps identified in Indian swamp buffaloes reveals it's uniqueness with riverine buffaloes vol.112, pp.3, 2020, https://doi.org/10.1016/j.ygeno.2020.01.010
  3. Genome-wide analysis reveals genetic diversity, linkage disequilibrium, and selection for milk production traits in Chinese buffalo breeds vol.103, pp.5, 2008, https://doi.org/10.3168/jds.2019-17364
  4. Evaluation of the immune responses against reduced doses of Brucella abortus S19 (calfhood) vaccine in water buffaloes (Bubalus bubalis), India vol.38, pp.45, 2008, https://doi.org/10.1016/j.vaccine.2020.09.010