DOI QR코드

DOI QR Code

Effect of Dietary β-1,3/1,6-glucan Supplementation on Growth Performance, Immune Response and Plasma Prostaglandin E2, Growth Hormone and Ghrelin in Weanling Piglets

  • Wang, Zhong (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Guo, Yuming (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Yuan, Jianmin (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Zhang, Bingkun (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
  • 투고 : 2007.09.22
  • 심사 : 2008.01.03
  • 발행 : 2008.05.01

초록

The experiment was conducted to evaluate the effect of ${\beta}$-1,3/1,6-glucan on growth performance, immunity and endocrine responses of weanling piglets. One hundred and eighty weanling piglets (Landrace$\times$Large White, $7.20{\pm}0.25kg$ BW and $28{\pm}2$ d of age) were randomly fed 1 of 5 treatment diets containing dietary ${\beta}$-1,3/1,6-glucan supplemented at 0, 25, 50, 100 and 200 mg/kg for 4 wks. Each treatment was replicated in 6 pens containing 6 pigs per pen. On d 14 and 28, body weight gain, feed consumption and feed efficiency were recorded as measures of growth performance. Peripheral blood lymphocyte proliferation and serum immunoglobulin G (IgG) were measured to study the effect of dietary ${\beta}$-1,3/1,6-glucan supplementation on immune function. Plasma prostaglandin E2 (PGE2), growth hormone (GH) and ghrelin were measured to investigate endocrine response to ${\beta}$-1,3/1,6-glucan supplementation. Our results suggest that average daily gain (ADG) and feed efficiency had a quadratic increase trend with dietary ${\beta}$-1,3/1,6-glucan supplementation from d 14 to 28, whereas it had no significant effect on average daily feed intake (ADFI). The treatment group fed with 50 mg/kg dietary ${\beta}$-1,3/1,6-glucan supplementation showed a numerical increase in ghrelin, a similar change trend with ADG and no significant effect on GH. Lymphocyte proliferation indices, serum IgG and plasma PGE2 concentrations varied linearly with dietary supplementation levels of ${\beta}$-1,3/1,6-glucan on d 14. Higher levels of ${\beta}$-1,3/1,6-glucan may have a transient immuno-enhancing effect on the cellular and humoral immune function of weanling piglets via decreased PGE2. Taking into account both immune response and growth performance, the most suitable dietary supplementation level of ${\beta}$-1,3/1,6-glucan is 50 mg/kg for weanling piglets.

키워드

참고문헌

  1. Bianchi, A. T., H. W. Moonen-leusen, P. J. van der Heijden and B. A. Bokhout. 1995. The use of a double antibody sandwich ELISA and monoclonal antibodies for the assessment of porcine IgM, IgG and IgA concentrations. Vet. Immunol. Immunopathol. 44:309-317. https://doi.org/10.1016/0165-2427(94)05307-E
  2. Bohn, J. A. and J. N. BeMiller. 1995. (1,3)-beta-D-glucans as biological response modifiers: a review of structure-function relationships. Carbohydr. Polym. 28:3-14. https://doi.org/10.1016/0144-8617(95)00076-3
  3. Brown, G. D. and S. Gordon. 2003. Fungal beta-glucans and mammalian immunity. Immunity 19:311-315. https://doi.org/10.1016/S1074-7613(03)00233-4
  4. Cantrell, D. A. and K. A. Smith. 1984. The interleukin-2 T-cell system: A new cell growth model. Sci. 224:1312-1316. https://doi.org/10.1126/science.6427923
  5. Castro, M., N. V. C. Ralston, T. I. Morgenthaler, M. S. Rohrbach and A. H. Limper. 1994. Candida albicans stimulates arachidonic acid liberation from alveolar macrophages through a-Mannan and $\beta$-glucan cell wall components. Infect. Immun. 62:3138-3145.
  6. Castro, R., N. Couso, A. Obach and J. Lamas. 1999. Effect of different $\beta$-glucans on the respiratory burst of turbot (Psetta maxima) and gilthead seabream (Sparus aurata) phagocytes. Fish. Shellfish. Immunol. 9:529-541. https://doi.org/10.1006/fsim.1999.0210
  7. Chae, B. J., J. D. lohakare, W. K. Moon, S. L. Lee, Y. H. Park and T. W. Hahn. 2006. Effect of supplementation $\beta$-glucan on the growth performance and immunity in broiler. Res.Vet. Sci. 80:291-298. https://doi.org/10.1016/j.rvsc.2005.07.008
  8. Cheng, Y. H., D. N. Lee, C. M. Wen and C. F. Weng. 2004. Effects of $\beta$-glucan supplementation on lymphocyte proliferation, macrophage chemotaxis and specific immune responses in broilers. Asian-Aust. J. Anim. Sci. 17(8):1145-1149. https://doi.org/10.5713/ajas.2004.1145
  9. Colditz, I. G. 2002. Effects of the immune system on metabolism: implications for production and disease resistance in livestock. Livest. Prod. Sci. 7:257-268.
  10. Dritz, S. S., J. Shi, T. L. Kielian, R. D. Goodband, J. L. Nelssen, M. D. Tokach, M. M. Chengappa, J. E. Smith and F Blecha. 1995. Influence of dietary beta-glucan on growth performance, nonspecific immunity, and resistance to streptococcus suis infection in weanling piglets. J. Anim. Sci. 73:3341-3350. https://doi.org/10.2527/1995.73113341x
  11. Demas, G. E., V. Chefer, M. I. Talan and R. J. Nelson. 1997. Metabolic costs of mounting an antigen-stimulated immune responses in adult and aged C57BL/6J mice. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 273:1631-1637. https://doi.org/10.1152/ajpregu.1997.273.5.R1631
  12. Eicher, S. D., C. A. Mckee, J. A. Carroll and E. A. Pajor. 2006. Supplemental vitamin C and yeast cell wall $\beta$-glucan as growth enhancers in newborn pigs and as immunomodulators after an endotoxin challenge after weaning. J. Anim. Sci. 84:2352-2360. https://doi.org/10.2527/jas.2005-770
  13. Hiss, B. S. and H. Sauerwein. 2003. Influence of dietary $\beta$-glucan on growth performance, Lymphocyte proliferation, specific immune response and haptoglobin plasma concentrations in piglets. J. Anim. Physiol. Anim. Nutr. 87:2-11. https://doi.org/10.1046/j.1439-0396.2003.00376.x
  14. Hahn, T. W., J. D. Lohakara, S. L. Lee, W. K. Moon and B. J. Chae. 2006. Effects of supplementation of $\beta$-glucans on growth performance, Nutrient digestibility, and immunity in weanling pigs. J. Anim. Sci. 84:1422-1428. https://doi.org/10.2527/2006.8461422x
  15. Hashimoto, K., I. Suzuki and T.Yadomae. 1991. Oral administration of SSG, a $\beta$-glucan obtained from Sclerotinia sclerotiorum, affect the function of Peyer's Patch cells. Int. J. Immunopharmacol. 13:437-442. https://doi.org/10.1016/0192-0561(91)90014-X
  16. Harris, S. G., J. Padilla, L. Koumas, D. Ray and R. P. Phipps. 2002. Prostaglandins as modulators of immunity. Trends Immunol. 23:144-152. https://doi.org/10.1016/S1471-4906(01)02154-8
  17. Hayashida, T., K. Murakami, K. Mogi, M. Nishihara, M. Nakazato, M. S. Mondal, Y. Horii, M. Kojima, K. Kangawa and N. Murakami. 2001. Ghrelin in domestic animals: distribution in stomach and its possible role. Domest. Anim. Endocrinol. 21:17-24. https://doi.org/10.1016/S0739-7240(01)00104-7
  18. He, X., C. M. Weyand, J. J. Goronzy, W. Zhong and J. M. Stuart. 2002. Bidirectional modulation of T cell-dependent antibody production by prostaglandin $E_2$. Int. Immunol. 14:69-77. https://doi.org/10.1093/intimm/14.1.69
  19. Hetland, G., N. Ohno, I. S. Aaberge and M. Lovik. 2000. Protective effect of $\beta$-glucan against systemic Streptococcus pneumoniae infection in mice. FEMS. Immunol. Med. Microbiol. 27:111-116.
  20. Huff, G. R., W. E. Huff, N. C. Rath and G. Tellez. 2006. Limited treatment with $\beta$-1,3/1,6-glucan improve production values of broiler chickens challenged with Escherichia coli. Poult. Sci. 85:613-618. https://doi.org/10.1093/ps/85.4.613
  21. Hunter, P. 1986. The immune system of the neonatal and weaned piglet: a review. J. S. Afr. Vet. Assoc. 57:243-245.
  22. Hunter, K. W., R. A. Gault and M. D. Berner. 2002. Preparation of microparticulate beta-glucan from Saccharomyces cerevisiae for use in immune potentiation. Lett. Appl. Microbiol. 35:262-272.
  23. Jorgensen, J. B. and B. Robertsen. 1995. Yeast glucan stimulates respiratory burst activity of Atlantic salmon (Salmo salar L.) macrophages. Dev. Comp. Immunol. 19:43-57. https://doi.org/10.1016/0145-305X(94)00045-H
  24. Katamura, K., N. Shintaku and Y. Yamauchi. 1995. Prostaglandin E2 at priming of naive CD4+ T cells inhibits acquisition of ability to produce IFN-gamma and IL-2, but not IL-4 and IL-5. J. Immunol. 155:4604-4608.
  25. Klasing, K. C., D. E. Laurin and R. K. Peng. 1987. Immunologically mediated growth depression in chicks: Influence of feed intake, corticosterone and interluckin-1. J. Nutr. 117:1629-1637. https://doi.org/10.1093/jn/117.9.1629
  26. Kojima, M., H. Hosoda, Y. Date, M. Nakazato, H. Matsuo and K. Kangawa. 1999. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656-660. https://doi.org/10.1038/45230
  27. Krakowski, L., J. Krzyzanowski, Z. Wrona and A. K. Siwicki. 1999. The effect of nonspecific immunostimulation of pregnant mares with $\beta$-1,3/1,6-glucan and levamisole on the immunoglobulins levels in colostrums, selected indices of nonspecific cellular and humoral immunity in foals in neonatal and postnatal period. Vet. Immunol. Immunopathol. 68:1-11. https://doi.org/10.1016/S0165-2427(99)00006-9
  28. Krakowski, L., J. Krzyzanowski and Z. Wrona. 2002. The influence of nonspecific immunostimulation of pregnant sows on the immunological value of colostrums. Vet. Immunol. Immunopathol. 87:89-95. https://doi.org/10.1016/S0165-2427(02)00004-1
  29. Li, J. D. F. Li, J. J. Xing, Z. B. Cheng, and C. H. Lai. 2006. Effect of $\beta$-glucan extracted from Saccharomyces cerevisiae on growth performance, and immunological and somatotropic responses of pigs challenged with Escherichia coli lipopolysaccharide. J. Anim. Sci. 84:2374-2381. https://doi.org/10.2527/jas.2004-541
  30. Lowry, K. C., M. B. Farnell, P. J. Ferro, C. L. Swaggerty, A. Bahl and M. H.Kogut. 2005. Purified $\beta$-glucan as an abiotic feed additive up-regulates the innate immune response in immature chickens against Salmonella enterica serovar Enteritidis. Int. J. Food. Microbiol. 98:309-318. https://doi.org/10.1016/j.ijfoodmicro.2004.06.008
  31. Mao, X. F., X. S. Piao, C. H. Lai, D. F. Li, J. J. Xing and B. L. Shi. 2005. Effects of $\beta$-glucan obtained from the Chinese herb Astragalus membranaceus and lipopolysaccharide challenge on performance, immunological, adrenal, and somatotropic responses of weanling pigs. J. Anim. Sci. 83:2775-2782. https://doi.org/10.2527/2005.83122775x
  32. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and cytotoxicity assays. J. Immunol. Methods. 65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  33. Mowat, A. M. 1987. The regulation of immune responses to dietary protein antigens. Immunol. Today. 8:93-98. https://doi.org/10.1016/0167-5699(87)90853-X
  34. Nakazato, M., N. Murakami, Y. Date, M. Kojima, H. Matsuo, K. Kangawa, and S. Matsukura. 2001. A role for ghrelin in the central regulation of feeding. Nature 409:194-198. https://doi.org/10.1038/35051587
  35. Ohno, N., K. Kurachi and T. Yadomae. 1987. Anti-tumor activity of highly branched (1,3)-beta-D-glucan, SSG, obtained from Sclerotinia sclerotiorum IFO 9395. J. Pharmacobiodyn. 10:478-486. https://doi.org/10.1248/bpb1978.10.478
  36. Ortuno, J., A. Cuesta, A. Rodriguez, M. A. Esteban and J. Meaeuer. 2002. Oral administration of yeast Saaccharomyces cerevisiae enhances the cellular innate immune response of gilthead seabream (Sparus aurata L.). Vet. Immunol. Immunopathol. 85:41-50. https://doi.org/10.1016/S0165-2427(01)00406-8
  37. Poutsiaka, D. D., M. Mengozzi, E. Vannier, B. Sinha, C. A. Dinarello. 1993. Cross-linking of the $\beta$-glucan receptor on human monocytes results in interleukin-1 receptor antagonist but not interleukin-1 production. Blood 82:3695-3700.
  38. Robertsen, B., G. Rorstad and R. Engstad. 1990. Enhancement of non-specific disease resistance in Atlantic salmon, Salmo salar L., by a glucan from Saccharomyces cerevisiae cell walls. J. Fish. Dis. 13:391-400. https://doi.org/10.1111/j.1365-2761.1990.tb00798.x
  39. Salfen, B. E., J. A. Carroll, D. H. Keisler and T. A. Strauch. 2004. Effects of exogenous ghrelin on feed intake, weight gain, behavior, and endocrine responses in weanling piglets. J. Anim. Sci. 82:1957-1966. https://doi.org/10.2527/2004.8271957x
  40. Schoenherr, W. D., D. S. Pollmann and J. A. Coalson. 1994. Titration of MacroGard-s on growth performance of nursery piglets. J. Anim. Sci. 72(Supp1.2):57(Abstr).
  41. Stokes, C. R., B. G. Miller, M. Bailey, A. D. Wilson and F. J. Bourne. 1987. The immune response to dietary antigens and its influence on disease susceptibility in farm animals. Vet. Immunol. Immunopathol. 17:413-423. https://doi.org/10.1016/0165-2427(87)90158-9
  42. Suzuki, I., K. Hashimoto, N. Ohon, H. Tanaka and T. Yadomae. 1989. Immunomodulation by orally administered $\beta$-glucan in mice. Int. J. Immunopharmacol. 11:761-769. https://doi.org/10.1016/0192-0561(89)90130-6
  43. Vetvicka, V. and Y. Jean-Claude. 2004. Effects of marine $\beta$-1,3- glucan on immune reactions. Int Immunopharmacol. 4:721-730. https://doi.org/10.1016/j.intimp.2004.02.007
  44. White, L. A., M. C. Newman, G. L. Cromwell and M. D. Lindemann. 2002. Brewers dried yeast as a source of mannan oligosaccharides for weanling pigs. J. Anim. Sci. 80:2619-2628.
  45. Yun, C. H., A. Estrada, A. V. Kessel, B. C. Park and B. Laarveld. 2003. $\beta$-glucans, extracted from oat, enhanced disease resistance against bacterial and parasitic infections. FEMS Immunol. Med. Microbiol. 35:67-75. https://doi.org/10.1016/S0928-8244(02)00460-1
  46. Zhang, B., Y. M. Guo and Z. Wang. 2008. The modulating effect of $\beta$-1, 3/1, 6-glucan supplementation in the diet on performance and immunological responses of broiler chickens. Asian-Aust. J. Anim. Sci. 21(2):237-244. https://doi.org/10.5713/ajas.2008.70207

피인용 문헌

  1. Production and structural analysis of the polysaccharide secreted by Trametes (Coriolus) versicolor ATCC 200801 vol.81, pp.5, 2009, https://doi.org/10.1007/s00253-008-1700-2
  2. Short chain regioselectively hydrolyzed scleroglucans induce maturation of porcine dendritic cells vol.82, pp.2, 2009, https://doi.org/10.1007/s00253-008-1813-7
  3. β-Glucans (Saccharomyces cereviseae) Reduce Glucose Levels and Attenuate Alveolar Bone Loss in Diabetic Rats with Periodontal Disease vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0134742
  4. Effects of Bacillus subtilis, Kefir and β-Glucan Supplementation on Growth Performance, Blood Characteristics, Meat Quality and Intestine Microbiota in Broilers vol.43, pp.3, 2016, https://doi.org/10.5536/KJPS.2016.43.3.159
  5. Effects of dietary supplementation with two alternatives to antibiotics on intestinal microbiota of preweaned calves challenged with Escherichia coli K99 vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05376-z
  6. Effect of maternal fish oil and seaweed extract supplementation on colostrum and milk composition, humoral immune response, and performance of suckled piglets1 vol.88, pp.9, 2010, https://doi.org/10.2527/jas.2009-2764
  7. Effect of maternal seaweed extract supplementation on suckling piglet growth, humoral immunity, selected microflora, and immune response after an ex vivo lipopolysaccharide challenge1 vol.90, pp.2, 2012, https://doi.org/10.2527/jas.2010-3243
  8. Beta-glucan feeding effect on biochemical and immune responses in vaccinated and non-vaccinated piglets against proliferative enteropathy vol.82, pp.2, 2013, https://doi.org/10.2754/avb201382020153
  9. lipopolysaccharide vol.9, pp.6, 2018, https://doi.org/10.1039/C7FO01980G
  10. The Growth-promoting Effect of Tetrabasic Zinc Chloride is Associated with Elevated Concentration of Growth Hormone and Ghrelin vol.21, pp.10, 2008, https://doi.org/10.5713/ajas.2008.80057
  11. Growth performance, nutrient digestibility, and selected fecal microbiota are improved by β-glucan supplementation in weaner pigs vol.18, pp.3, 2008, https://doi.org/10.2478/aoas-2018-0024
  12. Adding a bio-response modifier and zinc oxide to piglet weaner diets influences immunological responses to weaning vol.59, pp.1, 2008, https://doi.org/10.1071/an16332
  13. The Facilitating Effect of Tartary Buckwheat Flavonoids and Lactobacillus plantarum on the Growth Performance, Nutrient Digestibility, Antioxidant Capacity, and Fecal Microbiota of Weaned Piglets vol.9, pp.11, 2019, https://doi.org/10.3390/ani9110986
  14. Beta‐glucan from Agrobacterium sp. ZX09 improves growth performance and intestinal function in weaned piglets vol.103, pp.6, 2008, https://doi.org/10.1111/jpn.13163
  15. The anti-inflammatory effects of low- and high-molecular-weight beta-glucans from Agrobacterium sp. ZX09 in LPS-induced weaned piglets vol.11, pp.1, 2008, https://doi.org/10.1039/c9fo00627c
  16. Saccharomyces cerevisiae Yeast-Based Supplementation as a Galactagogue in Breastfeeding Women? A Review of Evidence from Animal and Human Studies vol.13, pp.3, 2021, https://doi.org/10.3390/nu13030727