비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development

  • 이경구 (서울대학교 공과대학 건축학과)
  • 투고 : 2008.07.08
  • 심사 : 2008.09.30
  • 발행 : 2008.10.10

초록

잘 설계된 철골 모멘트 접합부의 경우, 유효회전능력에 도달하기 전에 국부좌굴이 발생하고 비탄성 후좌굴 변형이 접합부 회전능력을 정의하는데 중대한 역할을 한다. 이 연구에서는 국부좌굴로 인한 강도저하와 보 소성힌지의 회전을 모델링하여, 단조증가하중 및 반복하중이 작 용하는 특별철골모멘트골조의 강접합 보-기둥 접합부의 회전능력을 예측하기 위한 근사적 해석모델을 제안한다. 제안된 항복선 소성힌지 모델은 좌굴된 소성힌지부의 형상에 기초하여 항복선과 소성존으로 구성되고, 소성메커니즘을 통해 국부좌굴후의 거동까지 포함한 모멘트-회전각 관계를 제 공한다. 향상된 WUF-W 와 RBS 접합부를 위해 제안된 모델을 개발한 후 실험결과와 비교를 통해 검증하였다. 동반논문(변수연구)에서는 광범위 한 H-형강의 기하학적 변수 따른 접합부 회전능력에 대하여 논의하였다.

Well-designed steel moment connections will undergo local buckling before they exhaust their available rotation capacity, and inelastic post-buckling deformation plays a major role in defining the connection rotation capacity. An approximate analytical method to model strength degradation and failure of beam plastic hinges due to local buckling and estimation of the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions is proposed in this study. This method is based on the plastic mechanism and a yield line plastic hinge (YLPH) model whose geometry is determined using the shapes of the buckled plastic hinges observed in experiments. The proposed YLPH model was developed for the improved WUF-W and RBS connections and validated in comparison with experimental data. The effects of the beam section geometric parameters on the rotation capacity were discussed in the companion paper (parametric studies).

키워드

참고문헌

  1. 이철호, 김재훈, 전상우, 김진호 (2006), 보 플랜지 절취형 (RBS) 철골 모멘트 접합부의 균형패널존 강도, 한국강구조학회 논문집, 제 18권 1호, pp.59-69.
  2. AISC (2002), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Inc., Chicago, IL.
  3. Anastasiadis, A, Gioncu, V, and Mazzolani, F.M. (2000), New trends in the evaluation of available ductility of steel members, Proceedings of Behavior of Steel Structures in Seismic Areas, pp 3-26.
  4. FEMA (2000), Recommended Seismic Design Criteria For New Steel Moment-Frame Buildings, FEMA Report No. 350, Federal Emergency Management Agency, Washington, D.C., 2000.
  5. Filippou, F.C. (2000), FEDEAS: Finite Element for Design, Evaluation and Analysis of Structure, Department of Civil and Environmental Engineering, University of California at Berkeley.
  6. Gioncu, V, and Petcu, D (1997), Available rotation capacity of wide-flange beam and beam-columns part 1, 2, Journal of Constructional Steel Research, Vol 43, No 1-3, pp 161-244. https://doi.org/10.1016/S0143-974X(97)00044-8
  7. Kemp, A.R. (1996), Inelastic local and lateral buckling in design codes, Journal of Structural Engineering, ASCE, Vol 122, No 4, pp374-382. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:4(374)
  8. Kuhlmann, U. (1989), Definition of flange slenderness limits on the basis of rotation capacity values, Journal of Constructional Steel Research, Vol 14, No 1, pp 21-40. https://doi.org/10.1016/0143-974X(89)90068-0
  9. Lay, M, G (1965), Flange Local Buckling in Wide-Flange Shapes, Journal of the Structural Division, ASCE, Vol 91, No 6, pp. 95-115.
  10. Möller, M, Johansson, B, and Collin, P (1997), A new analysis model of inelastic local flange buckling, Journal of Constructional Steel Research, Vol 43, No 1-3, pp 43-63. https://doi.org/10.1016/S0143-974X(97)00025-4
  11. Lukey, A.F., and Adams, P.R. (1969), Rotation capacity of wide flanged beams under moment gradient, Journal of Structural Division, ASCE, Vol 95, No 6, pp 1173-1188.
  12. Ricles, J.M., Fisher, J.W., Lu, L-W, Kaufmann, E.J. (2002), Development of improved welded moment connections for earthquake-resistant design, Journal of Constructional Steel Research, Vol 58, No 5-8, 2002, pp 565-604. https://doi.org/10.1016/S0143-974X(01)00095-5