흡수열펌프에서 흡수기의 성능 개선 연구

A Study on Improvement of Performance of Absorber in Absorption Heat Pump

  • 민병훈 (수원대학교 화공생명공학과)
  • Min, Byong-Hun (Department of Chemical & Biochemical Engineering, University of Suwon)
  • 투고 : 2008.04.24
  • 심사 : 2008.05.16
  • 발행 : 2008.06.10

초록

냉 난방 수요에서 일어나는 환경오염의 최소화와 화석연료 소비를 감소시키기 위해서 에너지보존을 개선시키는 것은 필수적이다. 이러한 점에서 흡수식 열펌프기술은 에너지 절약을 위해서 많은 가능성을 가지고 있다. 흡수식 열펌프는 에너지를 주입하지 않고 폐열의 이용을 높일 수 있는 방법이다. 흡수식 열펌프는 흡수기에서 흡수된 양의 증가가 매우 중요하기 때문에 흡수기 성능이 매우 중요하다. 본 연구에서는 흡수기의 성능을 개선시키기 위해서 메탄올과 글리세린을 작동유체로 하는 내벽에 나선형관을 설치하여 액상을 접선방향으로 공급하는 흡수기에 관한 연구를 수행하였다. 이 방법은 액상흐름에서 난류를 일으켜 물질 및 열전달을 증가시킨다. 흡수기의 각 위치에서 온도와 농도를 측정하여 열전달계수와 물질전달계수를 계산하였고 주입부분에서 열 및 물질전달이 향상되었음을 알 수 있었다.

The improvement of energy conservation is mandatory to decrease consumption of fossil fuels and to minimize negative impacts on the environment which originates from large cooling and heating demand. The absorption heat pump technology has a large potential for energy-saving in this respect. Absorption heat pump is a means to upgrade waste heat without the addition of extra thermal energy. The higher performance of absorber is of great importance for absorption heat pump cycle. In this study, in order to improve the performance of absorber, the absorber of tangential feed of a liquid phase with spiral tube has been investigated using methanol-glycerine as a working fluid. The spiral tube and tangential feeding generate the turbulence into the liquid flow while increasing the mass and heat transfer coefficients. The simultaneous heat and mass transfer were found to take place in a liquid turbulent film in the absorber with the spiral tube during the process of gas absorption. By calculating mass and heat transfer coefficients by measurement of the concentration and the temperature of each position in the absorber, the entrance was found to be more effective in enhancing mass and heat transfer.

키워드

과제정보

연구 과제 주관 기관 : 수원대학교

참고문헌

  1. E. P. Whitlow, Gas Age, 30, October, 19 (1958)
  2. A. Jemqvist, K. Abrahamsson, and G. Aly, Heat Recovery Systems & CHP, 12, 469 (1992) https://doi.org/10.1016/0890-4332(92)90015-A
  3. F. Ziegler and P. Riesch, Heat Recovery System & CHP, 13, 147 (1993) https://doi.org/10.1016/0890-4332(93)90034-S
  4. B. Agnew, A. Alaktiwi, A. Anderson, and I. Potts, Appl. Thermal Eng., 24, 1501 (2004) https://doi.org/10.1016/j.applthermaleng.2003.11.013
  5. R. J. Romero, L. Guillen, and I. Pilatowski, Appl. Thermal Eng., 24, 867 (2005)
  6. P. Le Goff and B. Schwarzer, Entropie, 156, 5 (1990)
  7. R. Matsuda, 3rd IEA Heat Pump Conference, Tokyo (1990)
  8. S. Iyoki and T. Uemura Rev. Int. Froid, 13, May, 191 (1990)
  9. S. Gabsi, Ph. D. Dissertation, I.N.P.T, Toulouse, France (1981)
  10. M. B. E. Siddig, F. A. Watson, and F. A. Holland, Chem. Eng. Res. Dev., 61, 283 (1983)
  11. L. L. Vasiliev, D. A. Mishkinis, A. A. Antukh, and A. G. Kulakov, Appl. Thermal Eng., 24, 1893 (2004) https://doi.org/10.1016/j.applthermaleng.2003.12.018
  12. E. Lepinasse, M. Marion, and V. Gotez, Appl. Thermal Eng., 21, 1251 (2001) https://doi.org/10.1016/S1359-4311(00)00113-7
  13. S. T. Munkejord, H. S. Mahelum, and P. Neksa, Int. J. of Refrigeration, 25, 471 (2002) https://doi.org/10.1016/S0140-7007(00)00036-0
  14. M. Izquierdo and S. Aroca, Int. J. of Energy Research, 14, 281 (1990) https://doi.org/10.1002/er.4440140304
  15. A. Jemqvist and G. Aly, Heat Recovery System & CHP, 12, 469 (1992) https://doi.org/10.1016/0890-4332(92)90015-A
  16. F. Ziegler and P. Riesch, Heat Recovery System & CHP, 13, 147 (1993)
  17. J. B. Castro, J. M. Corberian, and J. Gonzalvez, Appl. Thermal Eng., 25, 2450 (2005) https://doi.org/10.1016/j.applthermaleng.2004.12.009
  18. M. Youbi-Idrissi, J. Bonjour, and F. Meunier, Appl. Thermal Eng., 25, 2827 (2005) https://doi.org/10.1016/j.applthermaleng.2005.02.005
  19. M. A. R. Eisa and R. Best, Appl. Energy, 28, 69 (1987) https://doi.org/10.1016/0306-2619(87)90042-0
  20. G. S. Grover, M. A. R. Eisa, and F. A. Holland, Heat Recovery System & CHP, 8, 33 (1988)
  21. K. R. Patil, M. A. R. Eisa, and M. N. Kim, Appl. Energy, 34, 99 (1989) https://doi.org/10.1016/0306-2619(89)90023-8
  22. S. H. Won and W. Y. Lee, Heat Recovery System & CHP, 11, 41 (1991) https://doi.org/10.1016/0890-4332(91)90186-8
  23. G. Cacciola, G. Restuccia, and G. Rizzo, Heat Recovery System & CHP, 10, 177 (1990) https://doi.org/10.1016/0890-4332(90)90001-Z
  24. B. Mohanty, Ph. D. Dissertation, I.N.P.T, Toulouse, France (1985)
  25. P. D. Dan and S. S. Murthy, Int. J. of Energy Res., 13, 1 (1989) https://doi.org/10.1002/er.4440130102
  26. N. Bennani and D. Prevost, Heat Recovery System & CHP, 9, 257 (1989) https://doi.org/10.1016/0890-4332(89)90009-4
  27. D. Daiguji, E. Haihara, and T. Saito, Int. J. Heat Mass Transfer, 40, 1743 (1997) https://doi.org/10.1016/S0017-9310(96)00290-6
  28. C. Kren, H. M. Hellmann, and F. Ziegler, Proceeding of the International Sorption Heat Pump Conference, Munich, 375 (1999)
  29. F. Ziegler and G. Grossman, Int. J. Refrigerat, 19, 301 (1996) https://doi.org/10.1016/S0140-7007(96)00032-1
  30. Z, Zhnegguo, X. Tao, and F. Xiaoming, Appl. Thermal Eng., 24, 2293 (2004) https://doi.org/10.1016/j.applthermaleng.2004.01.012
  31. W. L. Cheng, K. Houda, P. Hu, and T. Kashiwagi, Appl. Thermal Eng., 24, 281 (2004) https://doi.org/10.1016/j.applthermaleng.2003.08.013
  32. D. Arzoz. P. Rodriuuez, and M. Izquierdo, Appl. Thermal Eng., 25, 797 (2005) https://doi.org/10.1016/j.applthermaleng.2004.08.003
  33. G. Grossman, Int. J. Heat Mass Transfer, 26, 357 (1983) https://doi.org/10.1016/0017-9310(83)90040-6
  34. K. Guo, B. Shu, and L. Chen, J. Eng. Thermophys, 15, 408 (1996)
  35. E. Hihara and T. Saito, Int. J. Refrigerat, 16, 339 (1993) https://doi.org/10.1016/0140-7007(93)90006-T
  36. W. J. F. Setterwall, Chem. Eng. Sci., 50, 3077 (1995) https://doi.org/10.1016/0009-2509(95)00146-V
  37. R. E. Treybal, Mass-Transfer Operations, ed. J. J. Carberry, J. R. Fair, and J. Wei, 3, 313, McGraw Hill, Singapore (1980)