Technology Trends in Fabrication of Nanostructures of Metal Oxides by Anodization and Their Applications

양극산화 기술을 이용한 금속산화물 나노구조 제조 및 응용 동향

  • Choi, Jinsub (Nanomaterials Application Division, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Lee, Jae Kwang (Gwangju Institute of Science and Technology (GIST)) ;
  • Lim, Jae Hoon (Nanomaterials Application Division, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Kim, Sung Joong (Nanomaterials Application Division, Korea Institute of Ceramic Engineering and Technology (KICET))
  • 최진섭 (요업(세라믹) 기술원 나노소재응용본부) ;
  • 이재광 (광주과학기술원 환경공학과) ;
  • 임재훈 (요업(세라믹) 기술원 나노소재응용본부) ;
  • 김성중 (요업(세라믹) 기술원 나노소재응용본부)
  • Received : 2008.05.26
  • Published : 2008.06.10

Abstract

Nanoporous alumina with highly ordered pore arrays, which is prepared based on electrochemical anodization under the controlled conditions, has attracted great attention due to the variety of its applications. In case of porous alumina, the manipulation of nanoporous structures under different electrochemical conditions and their formation mechanisms have been studied for a long time. Recently, its principles have been applied to other valve metals. Especially, there have been a big success in the preparation of titania nanotubes via the anodization of titanium. In this paper, we review the anodization of aluminum and recent trends in anodization of Ti and other valve metals based on the principles of aluminum anodization.

규칙적으로 배열되어 있는 나노크기의 기공을 가지고 있는 다공성 알루미나는 최근 응용범위의 확대 때문에 많은 관심을 끌고 있다. 이러한 다공성 알루미나를 제조하는 기본 원리는 제한된 조건하에서 금속을 양극산화 시키는 것이다. 전기화학적 양극산화에 의한 다공성 구조 제어 및 성장 메커니즘에 대한 연구는 최근 알루미늄에서부터 다른 부동태금속으로 확대되었으며 특히 최근에는 타이타늄 산화물 나노구조 제어에 성공적으로 적용되었다. 본 총설에서는 알루미늄의 양극산화 원리를 기술하고 최근 연구되어 있는 타이타늄 및 다른 부동태 금속에 적용되는 양극산화 기술의 흐름을 다룬다.

Keywords

References

  1. 원국광, 최태규, 양극산화 기술, 신광문화사 (2003)
  2. J. Choi, Ph.D dissertation, Martin-Luther-Universitat, Halle- Wittenberg, Germany (2004)
  3. 이익모, 진인주 외 공저, 나노소재, 대영사, P. 263 (2005)
  4. H. Masuda and K. Fukuda, Science, 268, 1466 (1995) https://doi.org/10.1126/science.268.5216.1466
  5. K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gosele, Nano Lett., 2, 677 (2002) https://doi.org/10.1021/nl025537k
  6. J. Choi, Y. Luo, R. B Wehrspohn, R. Hillebrand, J. Schilling, and U. Gosele, J. Appl. Phys., 94, 4757 (2003) https://doi.org/10.1063/1.1609033
  7. V. Miikkulainen, T. Rasilainen, E. Puukilainen, M. Suvanto, and T. A. Pakkanen Langmuir, 24, 4473 (2008) https://doi.org/10.1021/la800285s
  8. M. A. Kashi, A. Ramazani, M. Rahmandoust, and M. Noormohammadi, J. Phys. D, 40, 4625 (2007) https://doi.org/10.1088/0022-3727/40/15/040
  9. O. Jessensky, F. Muller, and U. Gosele, Appl. Phys. Lett., 72, 1173 (1998) https://doi.org/10.1063/1.121004
  10. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, Appl. Phys. Lett., 71, 2770 (1997) https://doi.org/10.1063/1.120128
  11. A.-P. Li, F. Muller, and V. Gosele, Electrochem. Solid-state Lett., 3, 131 (2000) https://doi.org/10.1149/1.1390979
  12. J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. Gosele, J. Vac. Sci. Technol., 21, 763 (2003) https://doi.org/10.1116/1.1556397
  13. W. Lee, R. Ji, C. A. Ross, U. Gosele, and K. Nielsch, Small, 2, 978 (2006) https://doi.org/10.1002/smll.200600100
  14. S. J. Kim, J. H. Lim, and J. Choi, Polymer Science and Technology, 17, 742 (2006)
  15. H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, Adv. Mater., 13, 189 (2001) https://doi.org/10.1002/1521-4095(200102)13:3<189::AID-ADMA189>3.0.CO;2-Z
  16. J. Choi, R. B. Wehrspohn, and U. Gosele, Adv. Mater., 15, 1531 (2003) https://doi.org/10.1002/adma.200305251
  17. S. Y. Zho, K. Chan, A. Yelon, and T. Veres, Adv. Mater., 19, 3004 (2007) https://doi.org/10.1002/adma.200701284
  18. W. Lee, R. Ji, U. Gosele, and K. Nielsch, Nat. Mater., 5, 741 (2006) https://doi.org/10.1038/nmat1717
  19. W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gosele, Nat. Nanotechnol., 3, 234 (2008) https://doi.org/10.1038/nnano.2008.54
  20. M. A. Kashi, A. Ramazani, M. Noormohammadi, M. Zarei, and P. Marachi, J. Phys. D, 40, 7032 (2007) https://doi.org/10.1088/0022-3727/40/22/025
  21. J. Choi, R. B. Wehrspohn, J. Lee, and U. Gosele, Electrochim. Acta., 49 2645 (2004) https://doi.org/10.1016/j.electacta.2004.02.015
  22. K. Gopal, K. Oomman, Varghese, M. paulose, K. Shankar, and C. A. Grimes, Sol. Energy Mater. Sol. Cells, 90, 2011 (2006) https://doi.org/10.1016/j.solmat.2006.04.007
  23. S. J. Kim and J. Choi, Ceramist, 10, 2, 18 (2007)
  24. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, J. Mater. Res., 40, 3331 (2001)
  25. Q. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, J. Mater. Res., 20, 230 (2005) https://doi.org/10.1557/JMR.2005.0020
  26. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett., 5, 191 (2005) https://doi.org/10.1021/nl048301k
  27. G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, and C. A. Grimes, J. Mater. Res., 19, 628 (2004) https://doi.org/10.1557/jmr.2004.19.2.628
  28. G. K. Mor, O. K. Varghese, M. Paulose, and C. A. Grimes, Sensor Lett., 1, 42 (2003) https://doi.org/10.1166/sl.2003.013
  29. G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, and C. A. Grimes, J. Mater. Res., 18, 2588 (2003) https://doi.org/10.1557/JMR.2003.0362
  30. V. P. Parkhutik and V. I. Shershulsky, J. Phys. D: Appl. Phys., 25, 1258 (1992) https://doi.org/10.1088/0022-3727/25/8/017
  31. D. D. Macdonald, J. Electrochem. Soc., 140, L27 (1993) https://doi.org/10.1149/1.2056179
  32. G. E. Thompson, Thin Solid Films, 297, 192 (1997) https://doi.org/10.1016/S0040-6090(96)09440-0
  33. A. Pakes, G. E. Thompson, P. Skeldon, and P. C. Morgan, Corros. Sci., 45, 1275 (2003) https://doi.org/10.1016/S0010-938X(02)00216-0
  34. J. Siejka and C. Ortega, J. Electrochem. Soc.: Solid State Sci. Technol., 124, 883 (1977)
  35. M. Paulose, H. E. Prakasam, O. K. Varghese, L. Peng, K. C. Popat, G. K. Mor, T. A, Desai, and C. A. Grimes, J. Phys. Chem. C, 111, 14992 (2007) https://doi.org/10.1021/jp075258r
  36. J. H. Lim and J. Choi, Small, 3, 1504 (2007) https://doi.org/10.1002/smll.200700114
  37. F. Fairbrother, The Chemistry of Niobium and Tantalum, Elsevier, Amsterdam, 20 (1967)
  38. I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki, Electrochem. Commun., 7, 97 (2005) https://doi.org/10.1016/j.elecom.2004.11.012
  39. L. R. Karlinsey, Electrochem. Commun., 7, 1190 (2005) https://doi.org/10.1016/j.elecom.2005.08.027
  40. J. Choi, J. H. Lim, S. C. Lee, J. H. Chang, K. J. Kim, and M. A. Cho, Electrochim. Acta., 51, 5502 (2006) https://doi.org/10.1016/j.electacta.2006.02.024
  41. J. Choi, J. H. Lim, J. Lee, and K. J. Kim, Nanotechnology, 18, 055603 (2007) https://doi.org/10.1088/0957-4484/18/5/055603
  42. W. Park, G. Yi, M. Kim, and S. Pennycook, Adv. Mater., 14, 1841 (2002) https://doi.org/10.1002/adma.200290015
  43. Y. Kong, D. Yu, B. Zhang, W. Fang, and S. Feng, Appl. Phys. Lett., 78, 407 (2001) https://doi.org/10.1063/1.1342050
  44. H. Zhang, X. Sun, R. Wang, and D. Yu, J. Cryst. Growth, 269, 464 (2004) https://doi.org/10.1016/j.jcrysgro.2004.05.078
  45. J. Wu and S. Liu, Adv. Mater., 14, 215 (2002) https://doi.org/10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J
  46. R. Peterson, C. Fields, and B. Gregg, Langmuir, 20, 5114 (2004) https://doi.org/10.1021/la049683c
  47. Z. Tian, J. Voigt, J. Liu, B. Mckenzie, M. Mcdermott, M. Rodriguez, H. Konishi, and H. Xu, Nat. Mater., 2, 821 (2003) https://doi.org/10.1038/nmat1014
  48. S. S. Chang, S. O. Yoon, H. J. Park, and A. Sakai, Mater. Lett., 53, 432 (2002) https://doi.org/10.1016/S0167-577X(01)00521-3
  49. X. Wu, G. Lu, C. Li, and G. Shi, Nanotechnology, 17, 4936 (2006) https://doi.org/10.1088/0957-4484/17/19/026
  50. C. Y. Kuan, J. M. Chou, I. C. Leu, and M. H. Hon, Electrochem. Commun., 9, 2093 (2007) https://doi.org/10.1016/j.elecom.2007.06.004
  51. S. J. Kim, J. Lee, and J. Choi, Electrochim. Acta., submitted (2008)
  52. S. J. Kim and J. Choi, Electrochem. Commun., 10, 175 (2008) https://doi.org/10.1016/j.elecom.2007.11.014