Involvement of Pro-Phenoloxidase 3 in Lamellocyte-Meidated Spontaneous Melanization in Drosophila

  • Nam, Hyuck-Jin (Division of Life and Pharmaceutical Science, Department of Life Science, Ewha Womans University, and National Creative Research Initiative Center for Symbiosystem) ;
  • Jang, In-Hwan (Division of Life and Pharmaceutical Science, Department of Life Science, Ewha Womans University, and National Creative Research Initiative Center for Symbiosystem) ;
  • Asano, Tsunaki (Cellular Genetics Laboratory, Faculty of Biological Sciences, Tokyo Metropolitan University) ;
  • Lee, Won-Jae (Division of Life and Pharmaceutical Science, Department of Life Science, Ewha Womans University, and National Creative Research Initiative Center for Symbiosystem)
  • Received : 2008.09.24
  • Accepted : 2008.09.29
  • Published : 2008.12.31

Abstract

Phenoloxidase (PO), a melanin-forming enzyme around the foreign bodies, is an important component of the host defense system in invertebrates. Pro-PO is the enzymatically inactive zymogen form of PO. In the Drosophila genome, three Pro-PO isoforms have been identified to date. These include Pro-PO1 and 2, which are primarily expressed in crystal cells, and Pro-PO3, which is predominantly found in the lamellocytes. In this study, we demonstrated that Drosophila Pro-PO3, but not Pro-PO1 or 2, is enzymatically active in its zymogen form. These findings were evidenced by spectacular melanin forming capacities of various cells and tissues that overexpressed these pro-enzymes. Furthermore, the melanization phenotype observed in the lamellocyte-enriched $hop^{Tum-l}$ mutant was drastically reduced in the absence of PPO3, indicating that PPO3 plays a major role in the lamellocyte-mediated spontaneous melanization process. Taken together, these findings indicate that the biochemical properties, activation mode and in vivo role of Pro-PO3 are likely distinct from those of the other two Pro-PO enzymes involved in Drosophila physiology.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Asada, N., Yokoyama, G., Kawamoto, N., Norioka, S., and Halla, T. (2003). Prophenol oxidase A3 in Drosophila melanogaster: activation and the peR-based cDNA sequence. Biochem. Genet. 41,151-163 https://doi.org/10.1023/A:1023325610300
  2. Ashida, M. (1990). The prophenoloxidase cascade in insect immunity. Res. Immunol. 141,908-910 https://doi.org/10.1016/0923-2494(90)90191-Z
  3. Ashida, M., and Ohnishi, E. (1967). Activation of pre-phenol oxidase in hemolymph of the silkworm, Bombyx mori. Arch. Biochem. Biophys. 122,411-416 https://doi.org/10.1016/0003-9861(67)90213-5
  4. Ashida, M., and Yamazaki, H.T. (1990). Biochemistry of the prophenoloxidase in insects: with special reference to its activation., Ohnishi, E. Ishizaki, I. ed. (Tokyo/Springer Verlag, Berlin, Japan Sci. Society Press)
  5. Cerenius, L., Lee, B.L., and Soderhall, K. (2008). The pro POsystem: pros and cons for its role in invertebrate immunity. Trends Immunol. 29, 263-271 https://doi.org/10.1016/j.it.2008.02.009
  6. De Gregorio, E., Han, S.J., Lee, vis, Baek, M.J., Osaki, T., Kawabata, S., Lee, B.L., Iwanaga, S., Lemaitre, B., and Brey, PT. (2002). An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev. Cell 3, 581-592 https://doi.org/10.1016/S1534-5807(02)00267-8
  7. Di Nocera, P.P., and Dawid, I.B. (1983). Transient expression of genes introduced into cultured cells of Drosophila. Proc. Natl. Acad. Sci. USA 80,7095-7098
  8. Duvic, B., Hoffmann, JA, Meister, M., and Royet, J. (2002). Notch signaling controls lineage specification during Drosophila larval hematopoiesis. Curro BioI. 12,1923-1927 https://doi.org/10.1016/S0960-9822(02)01297-6
  9. Eslin, P., and Doury, G. (2006). The fly Drosophila subobscura: a natural case of innate immunity deficiency. Dev. Compo Immunol. 30, 977-983 https://doi.org/10.1016/j.dci.2006.02.007
  10. Ferrandon, D., Imler, J.L., Hetru, C., and Hoffmann, J.A. (2007). The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat. Rev. Immunol. 7, 862-874 https://doi.org/10.1038/nri2194
  11. Fujimoto, K., Okino, N., Kawabata, S., Iwanaga, S., and Ohnishi, E. (1995). Nucleotide sequence of the cDNA encoding the proenzyme of phenol oxidase A 1 of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 92, 7769-7773
  12. Ha, EM, Oh, CT., Bae, Y.S., and Lee, W.J. (2005a). A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847-850 https://doi.org/10.1126/science.1117311
  13. Ha, E.M., Oh, CT., Ryu, J.H., Bae, Y.S., Kang, S'w., Jang, I.H., Brey, P.T., and Lee, w'J. (2005b). An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell 8, 125-132 https://doi.org/10.1016/j.devcel.2004.11.007
  14. Hall, M., Scott, T., Sugumaran, M., Soderhall, K., and Law, J.H. (1995). Proenzyme of Manduca sexta phenol oxidase: purification, activation, substrate specificity of the active enzyme, and molecular cloning. Proc. Natl. Acad. Sci. USA 92, 7764-7768
  15. Han, S.J., Choi, K.Y., Brey, P.T., and Lee, w'J. (1998). Molecular cloning and characterization of a Drosophila p38 mitogenactivated protein kinase. J. BioI. Chem. 273, 369-374 https://doi.org/10.1074/jbc.273.1.369
  16. Harrison, DA, Binari, R., Nahreini, T.S., Gilman, M., and Perrimon, N. (1995). Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 14,2857-2865
  17. Irving, P., Ubeda, J.M., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., Hoffmann, JA, Hetru, C., and Meister, M. (2005). New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell. Microbiol. 7, 335-350 https://doi.org/10.1111/j.1462-5822.2004.00462.x
  18. Jang, I.H., Chosa, N., Kim, S.H., Nam, H.J., Lemaitre, B., Ochiai, M., Kambris, Z., Brun, S., Hashimoto, C., Ashida, M., et al. (2006). A Spatzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev. Cell 10, 45-55
  19. Jang, I.H., Nam, H.J., and Lee, w'J. (2008). CLIP-domain serine proteases in Drosophila innate immunity. BMB Rep. 41, 102-107 https://doi.org/10.5483/BMBRep.2008.41.2.102
  20. Jiang, H., Wang, Y., Korochkina, S.E., Benes, H., and Kanost, M.R. (1997a). Molecular cloning of cDNAs for two pro-phenol oxidase subunits from the malaria vector, Anopheles gambiae. Insect Biochem. Mol. BioI. 27, 693-699 https://doi.org/10.1016/S0965-1748(97)00045-3
  21. Jiang, H., Wang, Y., Ma, C., and Kanost, M.R. (1997b). Subunit composition of pro-phenol oxidase from Manduca sexta: molecular cloning of subunit ProPO-P1. Insect Biochem. Mol. BioI. 27, 835-850 https://doi.org/10.1016/S0965-1748(97)00066-0
  22. Kan, H., Kim, C.H., Kwon, H.M., Park, J'w., Roh, K.B., Lee, H., Park, B.J., Zhang, R., Zhang, J., Soderhall, K., et al. (2008). Molecular control of phenoloxidase-induced melanin synthesis in an insect. J. BioI. Chem. 283, 25316-25323 https://doi.org/10.1074/jbc.M804364200
  23. Kanost, M.R., Jiang, H., and Yu, x.a. (2004). Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol. Rev. 198,97-105 https://doi.org/10.1111/j.0105-2896.2004.0121.x
  24. Kawabata, T., Yasuhara, Y., Ochiai, M., Matsuura, S., and Ashida, M. (1995). Molecular cloning of insect pro-phenol oxidase: a copper-containing protein homologous to arthropod hemocyanin. Proc. Natl. Acad. Sci. USA 92, 7774-7778
  25. Kwon, T.H., Lee, SY., Lee, J.H., Choi, J.S., Kawabata, S., Iwanaga, S., and Lee, B.L. (1997). Purification and characterization of prophenoloxidase from the hemolymph of coleopteran insect, Holotrichia diomphalia larvae. Mol. Cells 7, 90-97
  26. Leclerc, V., Pelte, N., EI Chamy, L., Martinelli, C., Ligoxygakis, P., Hoffmann, JA, and Reichhart, J.M. (2006). Prophenoloxidase activation is not required for survival to microbial infections in Drosophila. EMBO Rep. 7,231-235 https://doi.org/10.1038/sj.embor.7400592
  27. Lee, W.J., Ahmed, A., della Torre, A., Kobayashi, A., Ashida, M., and Brey, P.T. (1998). Molecular cloning and chromosomal localization of a prophenoloxidase eDNA from the malaria vector Anopheles gambiae. Insect Mol. BioI. 7,41-50 https://doi.org/10.1046/j.1365-2583.1998.71047.x
  28. Lee, H.S., Cho, MY., Lee, K.M., Kwon, T.H., Homma, K., Natori, S., and Lee, B.L. (1999). The pro-phenoloxidase of coleopteran insect, Tenebrio molitor, larvae was activated during cell clump/cell adhesion of insect cellular defense reactions. FEBS Lett. 444, 255-259 https://doi.org/10.1016/S0014-5793(99)00067-8
  29. Lemaitre, B., and Hoffmann, J. (2007). The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697-743 https://doi.org/10.1146/annurev.immunol.25.022106.141615
  30. Ligoxygakis, P., Pelte, N., Ji, C., Leclerc, V., Duvic, B., Belvin, M., Jiang, H., Hoffmann, JA, and Reichhart, J.M. (2002). A serpin mutant links Toll activation to melanization in the host defence of Drosophila. EMBO J. 21, 6330-6337 https://doi.org/10.1093/emboj/cdf661
  31. Luo, H., Hanratty, W.P., and Dearolf, C.R. (1995). An amino acid substitution in the Drosophila hopTum-1 Jak kinase causes leukemia-like hematopoietic defects. EMBO J. 14,1412-1420
  32. Muller, H.M., Dimopoulos, G., Blass, C., and Kafatos, F.C. (1999). A hemocyte-like cell line established from the malaria vector Anopheles gambiae expresses six prophenoloxidase genes. J. BioI. Chem. 274,11727-11735 https://doi.org/10.1074/jbc.274.17.11727
  33. Rizki, T.M., and Rizki, R.M. (1992). Lamellocyte differentiation in Drosophila larvae parasitized by Leptopilina. Dev. Compo Immunol. 16,103-110 https://doi.org/10.1016/0145-305X(92)90011-Z
  34. Rubin, G.M., and Spradling, A.C. (1982). Genetic transformation of Drosophila with transposable element vectors. Science 218, 348-353 https://doi.org/10.1126/science.6289436
  35. Sorrentino, R.P., Carton, Y., and Govind, S. (2002). Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev. BioI. 243, 65-80 https://doi.org/10.1006/dbio.2001.0542
  36. Tang, H., Kambris, Z., Lemaitre, B., and Hashimoto, C. (2006). Two proteases defining a melanization cascade in the immune system of Drosophila. J. BioI. Chem. 281, 28097-28104 https://doi.org/10.1074/jbc.M601642200
  37. Zettervall, C.J., Anderl, I., Williams, M.J., Palmer, R., Kurucz, E., Ando, I., and Hultmark, D. (2004). A directed screen for genes involved in Drosophila blood cell activation. Proc. Natl. Acad. Sci. USA 101, 14192-14197